--- language: - ru pipeline_tag: sentence-similarity tags: - russian - pretraining - embeddings - feature-extraction - sentence-similarity - sentence-transformers - transformers datasets: - IlyaGusev/gazeta - zloelias/lenta-ru license: mit base_model: cointegrated/LaBSE-en-ru --- Модель BERT для расчетов эмбедингов предложений на русском языке. Модель основана на [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) - имеет аналогичные размеры контекста (512), ембединга (768) и быстродействие. ## Использование: ```Python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('sergeyzh/LaBSE-ru-turbo') sentences = ["привет мир", "hello world", "здравствуй вселенная"] embeddings = model.encode(sentences) print(util.dot_score(embeddings, embeddings)) ``` ## Метрики Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka): | Model | CPU | GPU | size | Mean S | Mean S+W | dim | |:-----------------------------------|----------:|---------:|---------:|----------:|-----------:|-------:| | **sergeyzh/LaBSE-ru-turbo** | **133.40**|**15.30** |**490** | **0.789**| **0.703** | **768**| | BAAI/bge-m3 | 523.40 | 22.50 | 2166 | 0.787 | 0.696 | 1024 | | intfloat/multilingual-e5-large | 506.80 | 30.80 | 2136 | 0.780 | 0.686 | 1024 | | intfloat/multilingual-e5-base | 130.61 | 14.39 | 1061 | 0.761 | 0.669 | 768 | | sergeyzh/rubert-tiny-turbo | 5.51 | 3.25 | 111 | 0.749 | 0.667 | 312 | | intfloat/multilingual-e5-small | 40.86 | 12.09 | 449 | 0.742 | 0.645 | 384 | | cointegrated/LaBSE-en-ru | 133.40 | 15.30 | 490 | 0.739 | 0.667 | 768 | | Model | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 | |:-----------------------------------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------| | **sergeyzh/LaBSE-ru-turbo** |**0.864** |**0.748** |**0.490** |**0.814** |**0.974** |**0.806** |**0.815** |**0.802** |**0.320** |**0.401** | | BAAI/bge-m3 | 0.864 | 0.749 | 0.510 | 0.819 | 0.973 | 0.792 | 0.809 | 0.783 | 0.240 | 0.422 | | intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 | 0.798 | 0.819 | 0.773 | 0.224 | 0.374 | | intfloat/multilingual-e5-base | 0.835 | 0.704 | 0.459 | 0.796 | 0.964 | 0.783 | 0.802 | 0.738 | 0.235 | 0.376 | | sergeyzh/rubert-tiny-turbo | 0.828 | 0.722 | 0.476 | 0.787 | 0.955 | 0.757 | 0.780 | 0.685 | 0.305 | 0.373 | | intfloat/multilingual-e5-small | 0.822 | 0.714 | 0.457 | 0.758 | 0.957 | 0.761 | 0.779 | 0.691 | 0.234 | 0.275 | | cointegrated/LaBSE-en-ru | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 | 0.766 | 0.789 | 0.769 | 0.340 | 0.414 |