File size: 3,717 Bytes
64cc2c5
 
 
 
f983da5
64cc2c5
 
 
f983da5
 
 
 
 
64cc2c5
 
 
 
 
 
 
 
 
 
f983da5
64cc2c5
f983da5
 
 
64cc2c5
f983da5
 
 
 
 
64cc2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-dpo-full-ultrabin-low-margin-3-epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full-ultrabin-low-margin-3-epochs

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6812
- Rewards/chosen: -1.9326
- Rewards/rejected: -2.2832
- Rewards/accuracies: 0.6797
- Rewards/margins: 0.3506
- Logps/rejected: -490.9798
- Logps/chosen: -455.8898
- Logits/rejected: -0.1744
- Logits/chosen: -0.3072

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 55
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6871        | 0.3484 | 50   | 0.6798          | -0.0015        | -0.0300          | 0.5977             | 0.0285          | -265.6574      | -262.7750    | -2.5993         | -2.6328       |
| 0.6724        | 0.6969 | 100  | 0.6721          | -0.0365        | -0.0949          | 0.5938             | 0.0584          | -272.1548      | -266.2806    | -2.4994         | -2.5340       |
| 0.6047        | 1.0453 | 150  | 0.6797          | -0.1660        | -0.2332          | 0.5898             | 0.0673          | -285.9855      | -279.2270    | -2.5025         | -2.5443       |
| 0.5265        | 1.3937 | 200  | 0.6762          | -0.5743        | -0.7331          | 0.6719             | 0.1588          | -335.9708      | -320.0576    | -2.2718         | -2.3328       |
| 0.4984        | 1.7422 | 250  | 0.6732          | -1.2121        | -1.4445          | 0.6562             | 0.2325          | -407.1154      | -383.8381    | -1.4451         | -1.5433       |
| 0.3569        | 2.0906 | 300  | 0.6527          | -1.3455        | -1.6681          | 0.6758             | 0.3226          | -429.4680      | -397.1805    | -0.8708         | -0.9999       |
| 0.3329        | 2.4390 | 350  | 0.6840          | -1.9045        | -2.2570          | 0.6602             | 0.3525          | -488.3670      | -453.0816    | -0.1084         | -0.2447       |
| 0.3368        | 2.7875 | 400  | 0.6813          | -1.9317        | -2.2848          | 0.6797             | 0.3531          | -491.1398      | -455.8003    | -0.1808         | -0.3104       |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1