--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper medium French MLS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: facebook/multilingual_librispeech French type: facebook/multilingual_librispeech config: french split: test args: french metrics: - name: Wer type: wer value: 6.497245494665325 --- # Whisper medium French MLS This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the facebook/multilingual_librispeech French dataset. It achieves the following results on the evaluation set: - Loss: 0.1239 - Wer: 6.4972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1424 | 1.0 | 1000 | 0.1239 | 6.4972 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2