--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small.en tags: - whisper-event - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: openai/whisper-small.en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - type: wer value: 25.544485229854917 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: en split: test metrics: - type: wer value: 10.52 name: WER --- # openai/whisper-small.en This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3087 - Wer: 25.5445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0021 | 10.0033 | 1000 | 1.1983 | 25.8346 | | 0.0005 | 20.0067 | 2000 | 1.2810 | 25.4955 | | 0.0002 | 30.01 | 3000 | 1.3087 | 25.5445 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.4.0+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0