Movie Genre Prediction
DDS Contest

Name: Shalaka Thorat
Email: shalaka.thorat.432@gmail.com
Hugging Face Profile: shalaka-thorat

Brief about the Dataset

train _data['genre'].value counts()

*The dataset consists of 2 Files:

= Train.csv (For Training and Validation purpose) :antasy gjgg
orror

= Test.csv (For Predictions and Submission purpose) Ty 10
SC1T1
action 54909
crime 5468

= The training dataset includes 3 columns with 54,000 records: ~ Zvemere 2%

= Features: movie_name, Synopsis (Both are textual data) T 400
ri ar

= Target: genre (Consists of 10 classes each of 5400 examples) Name: genre, dtype: intea

" The test dataset includes only the feature columns (movie_name, synopsis) and the
goal is to predict the category/class of ‘genre’ out of the 10 classes.

Features Used

=We used both the features provided i.e. movie_name and synopsis, for model building.

= Firstly,) we preprocessed text data from movie_name (Convert to lowercase, Remove extra
spaces).

= Next, with a similar approach we preprocessed textual data from synopsis column (Convert
to lowercase, Remove digits, symbols, extra spaces, stop words)

= Furthermore, we combined text from movie_name and synopsis column for each record.

= Later on, we label encoded the ‘genre’ column to represent numerical classes for model
training.

= We split dataset into train and validation sets with 25% validation split, trained various
models and finalized best accuracy model.

= Lastly, we derived predictions from the finalized model, decoded predictions into the
actual classes and stored each genre with its respective id in a csv file.

Technigues Employed

= Libraries Used:

= Pandas (For Reading and Writing csv files)
= NLTK (For Text Data Preprocessing)
= Scikit Learn (For Vectorizing Text Data, Train-Test-Split, Model Building and Evaluation)

= Techniques Used:

= NLTK Preprocessing: Regex and Stop Words
= TF-IDF Vectorization

= Label Encoding

= Multinomial Naive Bayes Algorithm

Rationale behind Modelling Decisions

= We have done Pre-processing of movie_name and synopsis as we did not want any special characters in synopsis, extra
spaces and mixed case characters.

= We combined text from movie_name and synopsis columns, so as to provide more data to model for better training and
predictions.

= We used TF-IDF Vectorizer to convert our textual data into number format. Also, TF-IDF Vectorizer gave better accuracy
than Count Vectorizer.

= We utilized Label Encoder to encode genre data to classes so that our model understands it is a Multi-class Classification
Problem, and provides desired output.

= We tried out various models that worked fine with sparse training data (vectorized output), such as: Decision Tree,
Support Vector, K-Nearest Neighbors, Random Forest, Multinomial Naive Bayes. Out of all these models, Decision Tree,
K-Nearest Neighbors and Multinomial Naive Bayes provided the desired output.

= We compared the accuracy scores of these models and found out that Multinomial Naive Bayes had the highest
accuracy, hence used the model for test data predictions.

Model Accuracy and Submission File

Training model using Multinomial Naive Bayes, Getting predictions on Val A B
| |

from sklearn.naive_bayes import MultinomialNB id genre

16863 crime
48456 horror
mnb.fit(X_train, y_train) 41383 scifi
84007 mystery
40269 fantasy

, accuracy_score(y_test, y_pred)) 16524 adventure

Val Acc using MultinomialNB: ©.3622222222222222 21245 thriller

mnb = MultinomialNB()

y_pred = mnb.predict(X_test)

"

print("Val Acc using MultinomialNB:

Thank ou

