File size: 1,574 Bytes
cc13c3d 6fd3890 cc13c3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
language:
- en
base_model:
- Ultralytics/YOLOv8
tags:
- yolov8
- object-detection
- computer-vision
- deep-learning
- road-safety-ai
---
## Model Details
### Model Description
This model is trained to detect whether a person is wearing a helmet or not, using YOLOv8.
This is a custom-trained [YOLOv8](https://github.com/ultralytics/ultralytics) model that detects whether a person is wearing a helmet or not. The goal is to improve road safety and ensure helmet compliance using computer vision.
- **Developed by:** sharathhhhh
- **Model type:** Object detection
- **Language(s) (NLP):** English
- **License:** Apache license 2.0
- **Finetuned from model [optional]:** YOLOv8
## Model Details
- **Model**: YOLOv8
- **Framework**: [Ultralytics YOLO](https://github.com/ultralytics/ultralytics)
- **Backbone**: CSPDarknet
- **Trained for**: Helmet detection on riders using CCTV/video surveillance
- **Input size**: 640x640
- **Classes**:
- `with_helmet`
- `without_helmet`
---
## Training Configuration
- **Epochs**: 28
- **Optimizer**: SGD (default)
- **Loss**: YOLOv8 objectness + box + class
- **Image Size**: 640x640
- **Batch Size**: 16
Feel free to reach out on LinkedIn(sharathup) or email me at [email protected] for collaborations or suggestions.
## Example Usage
Install dependencies:
```bash
pip install ultralytics
#Load model and predict:
from ultralytics import YOLO
model = YOLO("your-username/helmet-detection-yolov8")
# Predict on image
results = model("rider.jpg")
# Display results
results[0].show() |