--- license: apache-2.0 language: - en base_model: - Ultralytics/YOLOv8 tags: - yolov8 - object-detection - computer-vision - deep-learning - road-safety-ai --- ## Model Details ### Model Description This model is trained to detect whether a person is wearing a helmet or not, using YOLOv8. This is a custom-trained [YOLOv8](https://github.com/ultralytics/ultralytics) model that detects whether a person is wearing a helmet or not. The goal is to improve road safety and ensure helmet compliance using computer vision. - **Developed by:** sharathhhhh - **Model type:** Object detection - **Language(s) (NLP):** English - **License:** Apache license 2.0 - **Finetuned from model [optional]:** YOLOv8 ## Model Details - **Model**: YOLOv8 - **Framework**: [Ultralytics YOLO](https://github.com/ultralytics/ultralytics) - **Backbone**: CSPDarknet - **Trained for**: Helmet detection on riders using CCTV/video surveillance - **Input size**: 640x640 - **Classes**: - `with_helmet` - `without_helmet` --- ## Training Configuration - **Epochs**: 28 - **Optimizer**: SGD (default) - **Loss**: YOLOv8 objectness + box + class - **Image Size**: 640x640 - **Batch Size**: 16 Feel free to reach out on LinkedIn(sharathup) or email me at sharathu0123@gmail.com for collaborations or suggestions. ## Example Usage Install dependencies: ```bash pip install ultralytics #Load model and predict: from ultralytics import YOLO model = YOLO("your-username/helmet-detection-yolov8") # Predict on image results = model("rider.jpg") # Display results results[0].show()