File size: 2,391 Bytes
d9a6314 4e14c94 d9a6314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/4jms502r)
# aoi_clip_high_resolution_concate_fusin_gpt_random_sampler
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9963
- Accuracy: 0.0500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 0.0008 | 9.9872 | 3110 | 3.0008 | 0.0500 |
| 0.0007 | 19.9743 | 6220 | 2.9971 | 0.0501 |
| 0.0007 | 29.9615 | 9330 | 2.9971 | 0.0501 |
| 0.0007 | 39.9486 | 12440 | 2.9988 | 0.0500 |
| 0.0007 | 49.9358 | 15550 | 2.9968 | 0.0499 |
| 0.0007 | 59.9229 | 18660 | 2.9966 | 0.0502 |
| 0.0007 | 69.9101 | 21770 | 2.9961 | 0.0503 |
| 0.0007 | 79.8972 | 24880 | 2.9967 | 0.0503 |
| 0.0007 | 89.8844 | 27990 | 2.9966 | 0.0503 |
| 0.0007 | 99.8715 | 31100 | 2.9963 | 0.0502 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|