File size: 2,405 Bytes
0e09ed7 71429a6 0e09ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_crossAttenttionFusion_fusin_new_sampler
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/8q4tic24)
# aoi_clip_high_resolution_crossAttenttionFusion_fusin_new_sampler
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.5135
- Accuracy: 0.0583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 25
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 2.156 | 9.9880 | 3110 | 2.9957 | 0.0492 |
| 2.1411 | 19.9759 | 6220 | 3.0536 | 0.0537 |
| 1.9888 | 29.9639 | 9330 | 3.3324 | 0.0567 |
| 1.8759 | 39.9518 | 12440 | 3.6092 | 0.0571 |
| 1.8129 | 49.9398 | 15550 | 3.8091 | 0.0575 |
| 1.7708 | 59.9277 | 18660 | 3.9898 | 0.0578 |
| 1.7413 | 69.9157 | 21770 | 4.2735 | 0.0579 |
| 1.7172 | 79.9037 | 24880 | 4.3434 | 0.0580 |
| 1.7056 | 89.8916 | 27990 | 4.5120 | 0.0581 |
| 1.7018 | 99.8796 | 31100 | 4.5135 | 0.0582 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|