File size: 2,377 Bytes
ee7986e 94f78be ee7986e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_text_only_gpt_new_sampler
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/gtoodtwl)
# aoi_clip_high_resolution_text_only_gpt_new_sampler
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2382
- Accuracy: 0.1291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 50
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 2.5113 | 9.9839 | 3110 | 2.8518 | 0.1566 |
| 2.3003 | 19.9679 | 6220 | 3.0242 | 0.1476 |
| 2.2124 | 29.9518 | 9330 | 3.1246 | 0.1404 |
| 2.1682 | 39.9358 | 12440 | 3.1806 | 0.1371 |
| 2.1384 | 49.9197 | 15550 | 3.2024 | 0.1342 |
| 2.1246 | 59.9037 | 18660 | 3.2168 | 0.1323 |
| 2.1121 | 69.8876 | 21770 | 3.2209 | 0.1313 |
| 2.0987 | 79.8716 | 24880 | 3.2137 | 0.1307 |
| 2.0986 | 89.8555 | 27990 | 3.2374 | 0.1301 |
| 2.0962 | 99.8395 | 31100 | 3.2382 | 0.1295 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|