--- library_name: transformers base_model: OFA-Sys/chinese-clip-vit-base-patch16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: fusion_None_sep_SEP_describe_gpt results: [] --- # fusion_None_sep_SEP_describe_gpt This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9430 - Accuracy: 0.1888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 60 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 480 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.6831 | 5.9653 | 774 | 2.6448 | 0.2023 | | 2.5187 | 11.9306 | 1548 | 2.6595 | 0.2078 | | 2.4385 | 17.8960 | 2322 | 2.7390 | 0.2042 | | 2.3938 | 23.8613 | 3096 | 2.7901 | 0.2023 | | 2.3615 | 29.8266 | 3870 | 2.8409 | 0.1995 | | 2.3383 | 35.7919 | 4644 | 2.9097 | 0.1964 | | 2.32 | 41.7572 | 5418 | 2.9306 | 0.1943 | | 2.3179 | 47.7225 | 6192 | 2.9450 | 0.1923 | | 2.3027 | 53.6879 | 6966 | 2.9337 | 0.1909 | | 2.3015 | 59.6532 | 7740 | 2.9430 | 0.1898 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0