Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,70 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: llama3.1
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.1
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# Model Summary
|
| 6 |
+
|
| 7 |
+
llama3.1-8B-Chinese-Chat is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3.1-8B-Instruct model.
|
| 8 |
+
|
| 9 |
+
Developers: [Shenzhi Wang](https://shenzhi-wang.netlify.app)\*, [Yaowei Zheng](https://github.com/hiyouga)\*, Guoyin Wang (in.ai), Shiji Song, Gao Huang. (\*: Equal Contribution)
|
| 10 |
+
|
| 11 |
+
- License: [Llama-3.1 License](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 12 |
+
- Base Model: Meta-Llama-3.1-8B-Instruct
|
| 13 |
+
- Model Size: 8.03B
|
| 14 |
+
- Context length: 8K
|
| 15 |
+
|
| 16 |
+
# 1. Introduction
|
| 17 |
+
|
| 18 |
+
This is the first model specifically fine-tuned for Chinese & English user through ORPO [1] based on the [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 19 |
+
|
| 20 |
+
**Compared to the original [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), our llama3.1-8B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses.**
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
|
| 24 |
+
|
| 25 |
+
Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory).
|
| 26 |
+
|
| 27 |
+
Training details:
|
| 28 |
+
|
| 29 |
+
- epochs: 3
|
| 30 |
+
- learning rate: 3e-6
|
| 31 |
+
- learning rate scheduler type: cosine
|
| 32 |
+
- Warmup ratio: 0.1
|
| 33 |
+
- cutoff len (i.e. context length): 8192
|
| 34 |
+
- orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05
|
| 35 |
+
- global batch size: 128
|
| 36 |
+
- fine-tuning type: full parameters
|
| 37 |
+
- optimizer: paged_adamw_32bit
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# 2. Usage
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 45 |
+
|
| 46 |
+
model_id = "shenzhi-wang/Llama3.1-8B-Chinese-Chat"
|
| 47 |
+
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
model_id, torch_dtype="auto", device_map="auto"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
messages = [
|
| 54 |
+
{"role": "user", "content": "写一首诗吧"},
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
input_ids = tokenizer.apply_chat_template(
|
| 58 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
| 59 |
+
).to(model.device)
|
| 60 |
+
|
| 61 |
+
outputs = model.generate(
|
| 62 |
+
input_ids,
|
| 63 |
+
max_new_tokens=8192,
|
| 64 |
+
do_sample=True,
|
| 65 |
+
temperature=0.6,
|
| 66 |
+
top_p=0.9,
|
| 67 |
+
)
|
| 68 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 69 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
| 70 |
+
```
|