Upload folder using huggingface_hub
Browse files- config.json +6 -1
- configuration_qwen2_vl.py +1 -191
- image_processing_qwen2_vl.py +126 -94
- modeling_qwen2_vl.py +33 -1586
- preprocessor_config.json +2 -0
config.json
CHANGED
@@ -2,12 +2,17 @@
|
|
2 |
"architectures": [
|
3 |
"Qwen2VisionTransformerPretrainedModel"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"depth": 32,
|
6 |
"embed_dim": 1280,
|
7 |
"hidden_act": "quick_gelu",
|
8 |
"hidden_size": 1536,
|
9 |
"in_channels": 3,
|
10 |
"in_chans": 3,
|
|
|
11 |
"mlp_ratio": 4,
|
12 |
"model_type": "qwen2_vl",
|
13 |
"num_heads": 16,
|
@@ -16,5 +21,5 @@
|
|
16 |
"spatial_patch_size": 14,
|
17 |
"temporal_patch_size": 2,
|
18 |
"torch_dtype": "bfloat16",
|
19 |
-
"transformers_version": "4.
|
20 |
}
|
|
|
2 |
"architectures": [
|
3 |
"Qwen2VisionTransformerPretrainedModel"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModel": "modeling_qwen2_vl.Qwen2VisionTransformerPretrainedModel",
|
7 |
+
"AutoConfig": "configuration_qwen2_vl.Qwen2VLVisionConfig"
|
8 |
+
},
|
9 |
"depth": 32,
|
10 |
"embed_dim": 1280,
|
11 |
"hidden_act": "quick_gelu",
|
12 |
"hidden_size": 1536,
|
13 |
"in_channels": 3,
|
14 |
"in_chans": 3,
|
15 |
+
"initializer_range": 0.02,
|
16 |
"mlp_ratio": 4,
|
17 |
"model_type": "qwen2_vl",
|
18 |
"num_heads": 16,
|
|
|
21 |
"spatial_patch_size": 14,
|
22 |
"temporal_patch_size": 2,
|
23 |
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.52.1"
|
25 |
}
|
configuration_qwen2_vl.py
CHANGED
@@ -38,6 +38,7 @@ class Qwen2VLVisionConfig(PretrainedConfig):
|
|
38 |
patch_size=14,
|
39 |
spatial_merge_size=2,
|
40 |
temporal_patch_size=2,
|
|
|
41 |
**kwargs,
|
42 |
):
|
43 |
super().__init__(**kwargs)
|
@@ -52,196 +53,5 @@ class Qwen2VLVisionConfig(PretrainedConfig):
|
|
52 |
self.patch_size = patch_size
|
53 |
self.spatial_merge_size = spatial_merge_size
|
54 |
self.temporal_patch_size = temporal_patch_size
|
55 |
-
|
56 |
-
|
57 |
-
class Qwen2VLConfig(PretrainedConfig):
|
58 |
-
r"""
|
59 |
-
This is the configuration class to store the configuration of a [`Qwen2VLModel`]. It is used to instantiate a
|
60 |
-
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
61 |
-
with the defaults will yield a similar configuration to that of
|
62 |
-
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
63 |
-
|
64 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
65 |
-
documentation from [`PretrainedConfig`] for more information.
|
66 |
-
|
67 |
-
|
68 |
-
Args:
|
69 |
-
vocab_size (`int`, *optional*, defaults to 152064):
|
70 |
-
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
|
71 |
-
`inputs_ids` passed when calling [`Qwen2VLModel`]
|
72 |
-
hidden_size (`int`, *optional*, defaults to 8192):
|
73 |
-
Dimension of the hidden representations.
|
74 |
-
intermediate_size (`int`, *optional*, defaults to 29568):
|
75 |
-
Dimension of the MLP representations.
|
76 |
-
num_hidden_layers (`int`, *optional*, defaults to 80):
|
77 |
-
Number of hidden layers in the Transformer encoder.
|
78 |
-
num_attention_heads (`int`, *optional*, defaults to 64):
|
79 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
80 |
-
num_key_value_heads (`int`, *optional*, defaults to 8):
|
81 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
82 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
83 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
84 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
85 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
86 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
87 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
88 |
-
The non-linear activation function (function or string) in the decoder.
|
89 |
-
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
90 |
-
The maximum sequence length that this model might ever be used with.
|
91 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
92 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
93 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
94 |
-
The epsilon used by the rms normalization layers.
|
95 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
96 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
97 |
-
relevant if `config.is_decoder=True`.
|
98 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
99 |
-
Whether the model's input and output word embeddings should be tied.
|
100 |
-
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
101 |
-
The base period of the RoPE embeddings.
|
102 |
-
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
103 |
-
Whether to use sliding window attention.
|
104 |
-
sliding_window (`int`, *optional*, defaults to 4096):
|
105 |
-
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
106 |
-
max_window_layers (`int`, *optional*, defaults to 80):
|
107 |
-
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
108 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
109 |
-
The dropout ratio for the attention probabilities.
|
110 |
-
vision_config (`Dict`, *optional*):
|
111 |
-
The config for the visual encoder initialization.
|
112 |
-
rope_scaling (`Dict`, *optional*):
|
113 |
-
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
114 |
-
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
115 |
-
accordingly.
|
116 |
-
Expected contents:
|
117 |
-
`rope_type` (`str`):
|
118 |
-
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
119 |
-
'llama3'], with 'default' being the original RoPE implementation.
|
120 |
-
`factor` (`float`, *optional*):
|
121 |
-
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
122 |
-
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
123 |
-
original maximum pre-trained length.
|
124 |
-
`original_max_position_embeddings` (`int`, *optional*):
|
125 |
-
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
126 |
-
pretraining.
|
127 |
-
`attention_factor` (`float`, *optional*):
|
128 |
-
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
129 |
-
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
130 |
-
`factor` field to infer the suggested value.
|
131 |
-
`beta_fast` (`float`, *optional*):
|
132 |
-
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
133 |
-
ramp function. If unspecified, it defaults to 32.
|
134 |
-
`beta_slow` (`float`, *optional*):
|
135 |
-
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
136 |
-
ramp function. If unspecified, it defaults to 1.
|
137 |
-
`short_factor` (`List[float]`, *optional*):
|
138 |
-
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
139 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
140 |
-
size divided by the number of attention heads divided by 2
|
141 |
-
`long_factor` (`List[float]`, *optional*):
|
142 |
-
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
143 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
144 |
-
size divided by the number of attention heads divided by 2
|
145 |
-
`low_freq_factor` (`float`, *optional*):
|
146 |
-
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
147 |
-
`high_freq_factor` (`float`, *optional*):
|
148 |
-
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
149 |
-
|
150 |
-
```python
|
151 |
-
>>> from transformers import Qwen2VLForConditionalGeneration, Qwen2VLConfig
|
152 |
-
|
153 |
-
>>> # Initializing a Qwen2VL style configuration
|
154 |
-
>>> configuration = Qwen2VLConfig()
|
155 |
-
|
156 |
-
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
157 |
-
>>> model = Qwen2VLForConditionalGeneration(configuration)
|
158 |
-
|
159 |
-
>>> # Accessing the model configuration
|
160 |
-
>>> configuration = model.config
|
161 |
-
```"""
|
162 |
-
|
163 |
-
model_type = "qwen2_vl"
|
164 |
-
sub_configs = {"vision_config": Qwen2VLVisionConfig}
|
165 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
166 |
-
# Default tensor parallel plan for base model `Qwen2VL`
|
167 |
-
base_model_tp_plan = {
|
168 |
-
"layers.*.self_attn.q_proj": "colwise",
|
169 |
-
"layers.*.self_attn.k_proj": "colwise",
|
170 |
-
"layers.*.self_attn.v_proj": "colwise",
|
171 |
-
"layers.*.self_attn.o_proj": "rowwise",
|
172 |
-
"layers.*.mlp.gate_proj": "colwise",
|
173 |
-
"layers.*.mlp.up_proj": "colwise",
|
174 |
-
"layers.*.mlp.down_proj": "rowwise",
|
175 |
-
}
|
176 |
-
base_model_pp_plan = {
|
177 |
-
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
178 |
-
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
179 |
-
"norm": (["hidden_states"], ["hidden_states"]),
|
180 |
-
}
|
181 |
-
|
182 |
-
def __init__(
|
183 |
-
self,
|
184 |
-
vocab_size=152064,
|
185 |
-
hidden_size=8192,
|
186 |
-
intermediate_size=29568,
|
187 |
-
num_hidden_layers=80,
|
188 |
-
num_attention_heads=64,
|
189 |
-
num_key_value_heads=8,
|
190 |
-
hidden_act="silu",
|
191 |
-
max_position_embeddings=32768,
|
192 |
-
initializer_range=0.02,
|
193 |
-
rms_norm_eps=1e-05,
|
194 |
-
use_cache=True,
|
195 |
-
tie_word_embeddings=False,
|
196 |
-
rope_theta=1000000.0,
|
197 |
-
use_sliding_window=False,
|
198 |
-
sliding_window=4096,
|
199 |
-
max_window_layers=80,
|
200 |
-
attention_dropout=0.0,
|
201 |
-
vision_config=None,
|
202 |
-
rope_scaling=None,
|
203 |
-
**kwargs,
|
204 |
-
):
|
205 |
-
if isinstance(vision_config, dict):
|
206 |
-
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
207 |
-
elif vision_config is None:
|
208 |
-
self.vision_config = self.sub_configs["vision_config"]()
|
209 |
-
|
210 |
-
self.vocab_size = vocab_size
|
211 |
-
self.max_position_embeddings = max_position_embeddings
|
212 |
-
self.hidden_size = hidden_size
|
213 |
-
self.intermediate_size = intermediate_size
|
214 |
-
self.num_hidden_layers = num_hidden_layers
|
215 |
-
self.num_attention_heads = num_attention_heads
|
216 |
-
self.use_sliding_window = use_sliding_window
|
217 |
-
self.sliding_window = sliding_window
|
218 |
-
self.max_window_layers = max_window_layers
|
219 |
-
|
220 |
-
# for backward compatibility
|
221 |
-
if num_key_value_heads is None:
|
222 |
-
num_key_value_heads = num_attention_heads
|
223 |
-
|
224 |
-
self.num_key_value_heads = num_key_value_heads
|
225 |
-
self.hidden_act = hidden_act
|
226 |
self.initializer_range = initializer_range
|
227 |
-
self.rms_norm_eps = rms_norm_eps
|
228 |
-
self.use_cache = use_cache
|
229 |
-
self.rope_theta = rope_theta
|
230 |
-
self.attention_dropout = attention_dropout
|
231 |
-
self.rope_scaling = rope_scaling
|
232 |
-
|
233 |
-
# Validate the correctness of rotary position embeddings parameters
|
234 |
-
# BC: if there is a 'type' field, move it to 'rope_type'.
|
235 |
-
# and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
|
236 |
-
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
237 |
-
# TODO: @raushan update config in the hub
|
238 |
-
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
239 |
-
if self.rope_scaling["type"] == "mrope":
|
240 |
-
self.rope_scaling["type"] = "default"
|
241 |
-
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
242 |
-
rope_config_validation(self, ignore_keys={"mrope_section"})
|
243 |
-
|
244 |
-
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
245 |
-
|
246 |
|
247 |
-
__all__ = ["Qwen2VLConfig"]
|
|
|
38 |
patch_size=14,
|
39 |
spatial_merge_size=2,
|
40 |
temporal_patch_size=2,
|
41 |
+
initializer_range=0.02,
|
42 |
**kwargs,
|
43 |
):
|
44 |
super().__init__(**kwargs)
|
|
|
53 |
self.patch_size = patch_size
|
54 |
self.spatial_merge_size = spatial_merge_size
|
55 |
self.temporal_patch_size = temporal_patch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
self.initializer_range = initializer_range
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
image_processing_qwen2_vl.py
CHANGED
@@ -24,78 +24,34 @@ from typing import Dict, List, Optional, Union
|
|
24 |
|
25 |
import numpy as np
|
26 |
|
27 |
-
from
|
28 |
-
from
|
29 |
convert_to_rgb,
|
30 |
resize,
|
31 |
to_channel_dimension_format,
|
32 |
)
|
33 |
-
from
|
34 |
OPENAI_CLIP_MEAN,
|
35 |
OPENAI_CLIP_STD,
|
36 |
ChannelDimension,
|
37 |
ImageInput,
|
38 |
PILImageResampling,
|
39 |
-
VideoInput,
|
40 |
get_image_size,
|
41 |
infer_channel_dimension_format,
|
42 |
is_scaled_image,
|
43 |
-
|
44 |
make_list_of_images,
|
45 |
to_numpy_array,
|
46 |
valid_images,
|
47 |
validate_preprocess_arguments,
|
48 |
)
|
49 |
-
from
|
|
|
50 |
|
51 |
|
52 |
logger = logging.get_logger(__name__)
|
53 |
|
54 |
|
55 |
-
if is_vision_available():
|
56 |
-
from PIL import Image
|
57 |
-
|
58 |
-
|
59 |
-
def make_batched_images(images) -> List[List[ImageInput]]:
|
60 |
-
"""
|
61 |
-
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
62 |
-
|
63 |
-
Args:
|
64 |
-
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
65 |
-
The input image.
|
66 |
-
|
67 |
-
Returns:
|
68 |
-
list: A list of images.
|
69 |
-
"""
|
70 |
-
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
71 |
-
return [img for img_list in images for img in img_list]
|
72 |
-
|
73 |
-
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
74 |
-
return images
|
75 |
-
|
76 |
-
elif is_valid_image(images):
|
77 |
-
return [images]
|
78 |
-
|
79 |
-
raise ValueError(f"Could not make batched images from {images}")
|
80 |
-
|
81 |
-
|
82 |
-
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
|
83 |
-
def make_batched_videos(videos) -> List[VideoInput]:
|
84 |
-
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
85 |
-
return videos
|
86 |
-
|
87 |
-
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
88 |
-
if isinstance(videos[0], Image.Image):
|
89 |
-
return [videos]
|
90 |
-
elif len(videos[0].shape) == 4:
|
91 |
-
return [list(video) for video in videos]
|
92 |
-
|
93 |
-
elif is_valid_image(videos) and len(videos.shape) == 4:
|
94 |
-
return [list(videos)]
|
95 |
-
|
96 |
-
raise ValueError(f"Could not make batched video from {videos}")
|
97 |
-
|
98 |
-
|
99 |
def smart_resize(
|
100 |
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
|
101 |
):
|
@@ -109,7 +65,7 @@ def smart_resize(
|
|
109 |
|
110 |
"""
|
111 |
if height < factor or width < factor:
|
112 |
-
raise ValueError(f"height:{height}
|
113 |
elif max(height, width) / min(height, width) > 200:
|
114 |
raise ValueError(
|
115 |
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
@@ -134,6 +90,8 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
134 |
Args:
|
135 |
do_resize (`bool`, *optional*, defaults to `True`):
|
136 |
Whether to resize the image's (height, width) dimensions.
|
|
|
|
|
137 |
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
138 |
Resampling filter to use when resizing the image.
|
139 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
@@ -153,7 +111,7 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
153 |
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
154 |
The max pixels of the image to resize the image.
|
155 |
patch_size (`int`, *optional*, defaults to 14):
|
156 |
-
The
|
157 |
temporal_patch_size (`int`, *optional*, defaults to 2):
|
158 |
The temporal patch size of the vision encoder.
|
159 |
merge_size (`int`, *optional*, defaults to 2):
|
@@ -165,6 +123,7 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
165 |
def __init__(
|
166 |
self,
|
167 |
do_resize: bool = True,
|
|
|
168 |
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
169 |
do_rescale: bool = True,
|
170 |
rescale_factor: Union[int, float] = 1 / 255,
|
@@ -172,14 +131,27 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
172 |
image_mean: Optional[Union[float, List[float]]] = None,
|
173 |
image_std: Optional[Union[float, List[float]]] = None,
|
174 |
do_convert_rgb: bool = True,
|
175 |
-
min_pixels: int =
|
176 |
-
max_pixels: int =
|
177 |
patch_size: int = 14,
|
178 |
temporal_patch_size: int = 2,
|
179 |
merge_size: int = 2,
|
180 |
**kwargs,
|
181 |
) -> None:
|
182 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
self.do_resize = do_resize
|
184 |
self.resample = resample
|
185 |
self.do_rescale = do_rescale
|
@@ -187,25 +159,27 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
187 |
self.do_normalize = do_normalize
|
188 |
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
189 |
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
190 |
-
|
191 |
-
self.max_pixels = max_pixels
|
192 |
self.patch_size = patch_size
|
193 |
self.temporal_patch_size = temporal_patch_size
|
194 |
self.merge_size = merge_size
|
195 |
-
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
196 |
self.do_convert_rgb = do_convert_rgb
|
197 |
|
198 |
def _preprocess(
|
199 |
self,
|
200 |
images: Union[ImageInput, VideoInput],
|
201 |
-
do_resize: bool = None,
|
|
|
202 |
resample: PILImageResampling = None,
|
203 |
-
do_rescale: bool = None,
|
204 |
-
rescale_factor: float = None,
|
205 |
-
do_normalize: bool = None,
|
206 |
image_mean: Optional[Union[float, List[float]]] = None,
|
207 |
image_std: Optional[Union[float, List[float]]] = None,
|
208 |
-
|
|
|
|
|
|
|
209 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
210 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
211 |
):
|
@@ -219,6 +193,8 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
219 |
Optional list of dictionaries containing additional information about vision inputs.
|
220 |
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
221 |
Whether to resize the image.
|
|
|
|
|
222 |
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
223 |
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
224 |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
@@ -231,6 +207,12 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
231 |
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
232 |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
233 |
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
235 |
Whether to convert the image to RGB.
|
236 |
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
@@ -269,9 +251,9 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
269 |
resized_height, resized_width = smart_resize(
|
270 |
height,
|
271 |
width,
|
272 |
-
factor=
|
273 |
-
min_pixels=
|
274 |
-
max_pixels=
|
275 |
)
|
276 |
image = resize(
|
277 |
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
@@ -291,26 +273,28 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
291 |
patches = np.array(processed_images)
|
292 |
if data_format == ChannelDimension.LAST:
|
293 |
patches = patches.transpose(0, 3, 1, 2)
|
294 |
-
if patches.shape[0] %
|
295 |
-
repeats = np.repeat(
|
|
|
|
|
296 |
patches = np.concatenate([patches, repeats], axis=0)
|
297 |
channel = patches.shape[1]
|
298 |
-
grid_t = patches.shape[0] //
|
299 |
-
grid_h, grid_w = resized_height //
|
300 |
patches = patches.reshape(
|
301 |
grid_t,
|
302 |
-
|
303 |
channel,
|
304 |
-
grid_h //
|
305 |
-
|
306 |
-
|
307 |
-
grid_w //
|
308 |
-
|
309 |
-
|
310 |
)
|
311 |
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
312 |
flatten_patches = patches.reshape(
|
313 |
-
grid_t * grid_h * grid_w, channel *
|
314 |
)
|
315 |
|
316 |
return flatten_patches, (grid_t, grid_h, grid_w)
|
@@ -319,15 +303,20 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
319 |
self,
|
320 |
images: ImageInput,
|
321 |
videos: VideoInput = None,
|
322 |
-
do_resize: bool = None,
|
323 |
-
size: Dict[str, int] = None,
|
|
|
|
|
324 |
resample: PILImageResampling = None,
|
325 |
-
do_rescale: bool = None,
|
326 |
-
rescale_factor: float = None,
|
327 |
-
do_normalize: bool = None,
|
328 |
image_mean: Optional[Union[float, List[float]]] = None,
|
329 |
image_std: Optional[Union[float, List[float]]] = None,
|
330 |
-
|
|
|
|
|
|
|
331 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
332 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
333 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
@@ -359,6 +348,16 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
359 |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
360 |
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
361 |
`True`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
363 |
Whether to convert the image to RGB.
|
364 |
return_tensors (`str` or `TensorType`, *optional*):
|
@@ -381,20 +380,34 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
381 |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
382 |
|
383 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
do_resize = do_resize if do_resize is not None else self.do_resize
|
385 |
-
|
386 |
resample = resample if resample is not None else self.resample
|
387 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
388 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
389 |
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
390 |
image_mean = image_mean if image_mean is not None else self.image_mean
|
391 |
image_std = image_std if image_std is not None else self.image_std
|
|
|
|
|
|
|
392 |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
393 |
|
394 |
if images is not None:
|
395 |
-
images =
|
396 |
-
if videos is not None:
|
397 |
-
videos = make_batched_videos(videos)
|
398 |
|
399 |
if images is not None and not valid_images(images):
|
400 |
raise ValueError(
|
@@ -412,18 +425,23 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
412 |
resample=resample,
|
413 |
)
|
414 |
|
|
|
415 |
if images is not None:
|
416 |
pixel_values, vision_grid_thws = [], []
|
417 |
for image in images:
|
418 |
patches, image_grid_thw = self._preprocess(
|
419 |
image,
|
420 |
do_resize=do_resize,
|
|
|
421 |
resample=resample,
|
422 |
do_rescale=do_rescale,
|
423 |
rescale_factor=rescale_factor,
|
424 |
do_normalize=do_normalize,
|
425 |
image_mean=image_mean,
|
426 |
image_std=image_std,
|
|
|
|
|
|
|
427 |
data_format=data_format,
|
428 |
do_convert_rgb=do_convert_rgb,
|
429 |
input_data_format=input_data_format,
|
@@ -432,29 +450,43 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
|
|
432 |
vision_grid_thws.append(image_grid_thw)
|
433 |
pixel_values = np.array(pixel_values)
|
434 |
vision_grid_thws = np.array(vision_grid_thws)
|
435 |
-
data
|
436 |
|
|
|
437 |
if videos is not None:
|
438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
for images in videos:
|
440 |
patches, video_grid_thw = self._preprocess(
|
441 |
images,
|
442 |
do_resize=do_resize,
|
|
|
443 |
resample=resample,
|
444 |
do_rescale=do_rescale,
|
445 |
rescale_factor=rescale_factor,
|
446 |
do_normalize=do_normalize,
|
447 |
image_mean=image_mean,
|
448 |
image_std=image_std,
|
|
|
|
|
|
|
449 |
data_format=data_format,
|
450 |
do_convert_rgb=do_convert_rgb,
|
451 |
input_data_format=input_data_format,
|
452 |
)
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
458 |
|
459 |
return BatchFeature(data=data, tensor_type=return_tensors)
|
460 |
|
|
|
24 |
|
25 |
import numpy as np
|
26 |
|
27 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
28 |
+
from transformers.image_transforms import (
|
29 |
convert_to_rgb,
|
30 |
resize,
|
31 |
to_channel_dimension_format,
|
32 |
)
|
33 |
+
from transformers.image_utils import (
|
34 |
OPENAI_CLIP_MEAN,
|
35 |
OPENAI_CLIP_STD,
|
36 |
ChannelDimension,
|
37 |
ImageInput,
|
38 |
PILImageResampling,
|
|
|
39 |
get_image_size,
|
40 |
infer_channel_dimension_format,
|
41 |
is_scaled_image,
|
42 |
+
make_flat_list_of_images,
|
43 |
make_list_of_images,
|
44 |
to_numpy_array,
|
45 |
valid_images,
|
46 |
validate_preprocess_arguments,
|
47 |
)
|
48 |
+
from transformers.utils import TensorType, logging
|
49 |
+
from transformers.video_utils import VideoInput, make_batched_videos
|
50 |
|
51 |
|
52 |
logger = logging.get_logger(__name__)
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def smart_resize(
|
56 |
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
|
57 |
):
|
|
|
65 |
|
66 |
"""
|
67 |
if height < factor or width < factor:
|
68 |
+
raise ValueError(f"height:{height} and width:{width} must be larger than factor:{factor}")
|
69 |
elif max(height, width) / min(height, width) > 200:
|
70 |
raise ValueError(
|
71 |
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
|
|
90 |
Args:
|
91 |
do_resize (`bool`, *optional*, defaults to `True`):
|
92 |
Whether to resize the image's (height, width) dimensions.
|
93 |
+
size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 1280}`):
|
94 |
+
Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
|
95 |
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
96 |
Resampling filter to use when resizing the image.
|
97 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
|
111 |
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
112 |
The max pixels of the image to resize the image.
|
113 |
patch_size (`int`, *optional*, defaults to 14):
|
114 |
+
The spatial patch size of the vision encoder.
|
115 |
temporal_patch_size (`int`, *optional*, defaults to 2):
|
116 |
The temporal patch size of the vision encoder.
|
117 |
merge_size (`int`, *optional*, defaults to 2):
|
|
|
123 |
def __init__(
|
124 |
self,
|
125 |
do_resize: bool = True,
|
126 |
+
size: Optional[Dict[str, int]] = None,
|
127 |
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
128 |
do_rescale: bool = True,
|
129 |
rescale_factor: Union[int, float] = 1 / 255,
|
|
|
131 |
image_mean: Optional[Union[float, List[float]]] = None,
|
132 |
image_std: Optional[Union[float, List[float]]] = None,
|
133 |
do_convert_rgb: bool = True,
|
134 |
+
min_pixels: Optional[int] = None,
|
135 |
+
max_pixels: Optional[int] = None,
|
136 |
patch_size: int = 14,
|
137 |
temporal_patch_size: int = 2,
|
138 |
merge_size: int = 2,
|
139 |
**kwargs,
|
140 |
) -> None:
|
141 |
super().__init__(**kwargs)
|
142 |
+
if size is not None and ("shortest_edge" not in size or "longest_edge" not in size):
|
143 |
+
raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")
|
144 |
+
else:
|
145 |
+
size = {"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 1280}
|
146 |
+
# backward compatibility: override size with min_pixels and max_pixels if they are provided
|
147 |
+
if min_pixels is not None:
|
148 |
+
size["shortest_edge"] = min_pixels
|
149 |
+
if max_pixels is not None:
|
150 |
+
size["longest_edge"] = max_pixels
|
151 |
+
self.min_pixels = size["shortest_edge"]
|
152 |
+
self.max_pixels = size["longest_edge"]
|
153 |
+
self.size = size
|
154 |
+
|
155 |
self.do_resize = do_resize
|
156 |
self.resample = resample
|
157 |
self.do_rescale = do_rescale
|
|
|
159 |
self.do_normalize = do_normalize
|
160 |
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
161 |
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
162 |
+
|
|
|
163 |
self.patch_size = patch_size
|
164 |
self.temporal_patch_size = temporal_patch_size
|
165 |
self.merge_size = merge_size
|
|
|
166 |
self.do_convert_rgb = do_convert_rgb
|
167 |
|
168 |
def _preprocess(
|
169 |
self,
|
170 |
images: Union[ImageInput, VideoInput],
|
171 |
+
do_resize: Optional[bool] = None,
|
172 |
+
size: Optional[Dict[str, int]] = None,
|
173 |
resample: PILImageResampling = None,
|
174 |
+
do_rescale: Optional[bool] = None,
|
175 |
+
rescale_factor: Optional[float] = None,
|
176 |
+
do_normalize: Optional[bool] = None,
|
177 |
image_mean: Optional[Union[float, List[float]]] = None,
|
178 |
image_std: Optional[Union[float, List[float]]] = None,
|
179 |
+
patch_size: Optional[int] = None,
|
180 |
+
temporal_patch_size: Optional[int] = None,
|
181 |
+
merge_size: Optional[int] = None,
|
182 |
+
do_convert_rgb: Optional[bool] = None,
|
183 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
184 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
185 |
):
|
|
|
193 |
Optional list of dictionaries containing additional information about vision inputs.
|
194 |
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
195 |
Whether to resize the image.
|
196 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
197 |
+
Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
|
198 |
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
199 |
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
200 |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
|
207 |
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
208 |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
209 |
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
210 |
+
patch_size (`int`, *optional*, defaults to `self.patch_size`):
|
211 |
+
The spatial patch size of the vision encoder.
|
212 |
+
temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
|
213 |
+
The temporal patch size of the vision encoder.
|
214 |
+
merge_size (`int`, *optional*, defaults to `self.merge_size`):
|
215 |
+
The merge size of the vision encoder to llm encoder.
|
216 |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
217 |
Whether to convert the image to RGB.
|
218 |
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
|
251 |
resized_height, resized_width = smart_resize(
|
252 |
height,
|
253 |
width,
|
254 |
+
factor=patch_size * merge_size,
|
255 |
+
min_pixels=size["shortest_edge"],
|
256 |
+
max_pixels=size["longest_edge"],
|
257 |
)
|
258 |
image = resize(
|
259 |
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
|
|
273 |
patches = np.array(processed_images)
|
274 |
if data_format == ChannelDimension.LAST:
|
275 |
patches = patches.transpose(0, 3, 1, 2)
|
276 |
+
if patches.shape[0] % temporal_patch_size != 0:
|
277 |
+
repeats = np.repeat(
|
278 |
+
patches[-1][np.newaxis], temporal_patch_size - (patches.shape[0] % temporal_patch_size), axis=0
|
279 |
+
)
|
280 |
patches = np.concatenate([patches, repeats], axis=0)
|
281 |
channel = patches.shape[1]
|
282 |
+
grid_t = patches.shape[0] // temporal_patch_size
|
283 |
+
grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
|
284 |
patches = patches.reshape(
|
285 |
grid_t,
|
286 |
+
temporal_patch_size,
|
287 |
channel,
|
288 |
+
grid_h // merge_size,
|
289 |
+
merge_size,
|
290 |
+
patch_size,
|
291 |
+
grid_w // merge_size,
|
292 |
+
merge_size,
|
293 |
+
patch_size,
|
294 |
)
|
295 |
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
296 |
flatten_patches = patches.reshape(
|
297 |
+
grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
|
298 |
)
|
299 |
|
300 |
return flatten_patches, (grid_t, grid_h, grid_w)
|
|
|
303 |
self,
|
304 |
images: ImageInput,
|
305 |
videos: VideoInput = None,
|
306 |
+
do_resize: Optional[bool] = None,
|
307 |
+
size: Optional[Dict[str, int]] = None,
|
308 |
+
min_pixels: Optional[int] = None,
|
309 |
+
max_pixels: Optional[int] = None,
|
310 |
resample: PILImageResampling = None,
|
311 |
+
do_rescale: Optional[bool] = None,
|
312 |
+
rescale_factor: Optional[float] = None,
|
313 |
+
do_normalize: Optional[bool] = None,
|
314 |
image_mean: Optional[Union[float, List[float]]] = None,
|
315 |
image_std: Optional[Union[float, List[float]]] = None,
|
316 |
+
patch_size: Optional[int] = None,
|
317 |
+
temporal_patch_size: Optional[int] = None,
|
318 |
+
merge_size: Optional[int] = None,
|
319 |
+
do_convert_rgb: Optional[bool] = None,
|
320 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
321 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
322 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
|
348 |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
349 |
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
350 |
`True`.
|
351 |
+
min_pixels (`int`, *optional*, defaults to `self.min_pixels`):
|
352 |
+
The min pixels of the image to resize the image.
|
353 |
+
max_pixels (`int`, *optional*, defaults to `self.max_pixels`):
|
354 |
+
The max pixels of the image to resize the image.
|
355 |
+
patch_size (`int`, *optional*, defaults to `self.patch_size`):
|
356 |
+
The spatial patch size of the vision encoder.
|
357 |
+
temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
|
358 |
+
The temporal patch size of the vision encoder.
|
359 |
+
merge_size (`int`, *optional*, defaults to `self.merge_size`):
|
360 |
+
The merge size of the vision encoder to llm encoder.
|
361 |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
362 |
Whether to convert the image to RGB.
|
363 |
return_tensors (`str` or `TensorType`, *optional*):
|
|
|
380 |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
381 |
|
382 |
"""
|
383 |
+
min_pixels = min_pixels if min_pixels is not None else self.min_pixels
|
384 |
+
max_pixels = max_pixels if max_pixels is not None else self.max_pixels
|
385 |
+
|
386 |
+
if size is not None:
|
387 |
+
if "shortest_edge" not in size or "longest_edge" not in size:
|
388 |
+
raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")
|
389 |
+
min_pixels = size["shortest_edge"]
|
390 |
+
elif min_pixels is not None and max_pixels is not None:
|
391 |
+
# backward compatibility: override size with min_pixels and max_pixels if they are provided
|
392 |
+
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
|
393 |
+
else:
|
394 |
+
size = {**self.size}
|
395 |
+
|
396 |
do_resize = do_resize if do_resize is not None else self.do_resize
|
397 |
+
|
398 |
resample = resample if resample is not None else self.resample
|
399 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
400 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
401 |
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
402 |
image_mean = image_mean if image_mean is not None else self.image_mean
|
403 |
image_std = image_std if image_std is not None else self.image_std
|
404 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
405 |
+
temporal_patch_size = temporal_patch_size if temporal_patch_size is not None else self.temporal_patch_size
|
406 |
+
merge_size = merge_size if merge_size is not None else self.merge_size
|
407 |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
408 |
|
409 |
if images is not None:
|
410 |
+
images = make_flat_list_of_images(images)
|
|
|
|
|
411 |
|
412 |
if images is not None and not valid_images(images):
|
413 |
raise ValueError(
|
|
|
425 |
resample=resample,
|
426 |
)
|
427 |
|
428 |
+
data = {}
|
429 |
if images is not None:
|
430 |
pixel_values, vision_grid_thws = [], []
|
431 |
for image in images:
|
432 |
patches, image_grid_thw = self._preprocess(
|
433 |
image,
|
434 |
do_resize=do_resize,
|
435 |
+
size=size,
|
436 |
resample=resample,
|
437 |
do_rescale=do_rescale,
|
438 |
rescale_factor=rescale_factor,
|
439 |
do_normalize=do_normalize,
|
440 |
image_mean=image_mean,
|
441 |
image_std=image_std,
|
442 |
+
patch_size=patch_size,
|
443 |
+
temporal_patch_size=temporal_patch_size,
|
444 |
+
merge_size=merge_size,
|
445 |
data_format=data_format,
|
446 |
do_convert_rgb=do_convert_rgb,
|
447 |
input_data_format=input_data_format,
|
|
|
450 |
vision_grid_thws.append(image_grid_thw)
|
451 |
pixel_values = np.array(pixel_values)
|
452 |
vision_grid_thws = np.array(vision_grid_thws)
|
453 |
+
data.update({"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws})
|
454 |
|
455 |
+
# kept for BC only and should be removed after v5.0
|
456 |
if videos is not None:
|
457 |
+
logger.warning(
|
458 |
+
"`Qwen2VLImageProcessor` works only with image inputs and doesn't process videos anymore. "
|
459 |
+
"This is a deprecated behavior and will be removed in v5.0. "
|
460 |
+
"Your videos should be forwarded to `Qwen2VLVideoProcessor`. "
|
461 |
+
)
|
462 |
+
videos = make_batched_videos(videos)
|
463 |
+
pixel_values_videos, vision_grid_thws_videos = [], []
|
464 |
for images in videos:
|
465 |
patches, video_grid_thw = self._preprocess(
|
466 |
images,
|
467 |
do_resize=do_resize,
|
468 |
+
size=size,
|
469 |
resample=resample,
|
470 |
do_rescale=do_rescale,
|
471 |
rescale_factor=rescale_factor,
|
472 |
do_normalize=do_normalize,
|
473 |
image_mean=image_mean,
|
474 |
image_std=image_std,
|
475 |
+
patch_size=patch_size,
|
476 |
+
temporal_patch_size=temporal_patch_size,
|
477 |
+
merge_size=merge_size,
|
478 |
data_format=data_format,
|
479 |
do_convert_rgb=do_convert_rgb,
|
480 |
input_data_format=input_data_format,
|
481 |
)
|
482 |
+
pixel_values_videos.extend(patches)
|
483 |
+
vision_grid_thws_videos.append(video_grid_thw)
|
484 |
+
data.update(
|
485 |
+
{
|
486 |
+
"pixel_values_videos": np.array(pixel_values_videos),
|
487 |
+
"video_grid_thw": np.array(vision_grid_thws_videos),
|
488 |
+
}
|
489 |
+
)
|
490 |
|
491 |
return BatchFeature(data=data, tensor_type=return_tensors)
|
492 |
|
modeling_qwen2_vl.py
CHANGED
@@ -27,139 +27,30 @@ import torch
|
|
27 |
import torch.nn as nn
|
28 |
import torch.nn.functional as F
|
29 |
import torch.utils.checkpoint
|
30 |
-
from torch.nn import
|
31 |
|
32 |
from transformers.activations import ACT2FN
|
33 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
34 |
from transformers.generation import GenerationMixin
|
35 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
36 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
37 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
38 |
from transformers.modeling_utils import PreTrainedModel
|
39 |
-
from transformers.utils import
|
40 |
-
|
41 |
-
add_start_docstrings_to_model_forward,
|
42 |
-
is_flash_attn_2_available,
|
43 |
-
is_flash_attn_greater_or_equal_2_10,
|
44 |
-
is_torchdynamo_compiling,
|
45 |
-
logging,
|
46 |
-
replace_return_docstrings,
|
47 |
-
)
|
48 |
-
from .configuration_qwen2_vl import Qwen2VLConfig, Qwen2VLVisionConfig
|
49 |
|
50 |
|
51 |
-
if
|
52 |
-
from
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
flash_attn_varlen_func = None
|
57 |
|
|
|
58 |
|
59 |
-
logger = logging.get_logger(__name__)
|
60 |
-
|
61 |
-
_CONFIG_FOR_DOC = "Qwen2VLConfig"
|
62 |
-
|
63 |
-
|
64 |
-
@dataclass
|
65 |
-
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
66 |
-
"""
|
67 |
-
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
68 |
-
|
69 |
-
Args:
|
70 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
71 |
-
Language modeling loss (for next-token prediction).
|
72 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
73 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
74 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
75 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
76 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
77 |
-
|
78 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
79 |
-
`past_key_values` input) to speed up sequential decoding.
|
80 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
81 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
82 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
83 |
-
|
84 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
85 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
86 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
87 |
-
sequence_length)`.
|
88 |
-
|
89 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
90 |
-
heads.
|
91 |
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
92 |
-
The rope index difference between sequence length and multimodal rope.
|
93 |
-
"""
|
94 |
-
|
95 |
-
loss: Optional[torch.FloatTensor] = None
|
96 |
-
logits: torch.FloatTensor = None
|
97 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None
|
98 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
99 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
100 |
-
rope_deltas: Optional[torch.LongTensor] = None
|
101 |
-
|
102 |
-
|
103 |
-
class Qwen2VLRotaryEmbedding(nn.Module):
|
104 |
-
def __init__(self, config: Qwen2VLConfig, device=None):
|
105 |
-
super().__init__()
|
106 |
-
# BC: "rope_type" was originally "type"
|
107 |
-
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
108 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
109 |
-
else:
|
110 |
-
self.rope_type = "default"
|
111 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
112 |
-
self.original_max_seq_len = config.max_position_embeddings
|
113 |
-
|
114 |
-
self.config = config
|
115 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
116 |
-
|
117 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
118 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
119 |
-
self.original_inv_freq = self.inv_freq
|
120 |
-
|
121 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
122 |
-
"""
|
123 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
124 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
125 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
126 |
-
"""
|
127 |
-
seq_len = torch.max(position_ids) + 1
|
128 |
-
if seq_len > self.max_seq_len_cached: # growth
|
129 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(
|
130 |
-
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
131 |
-
)
|
132 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
133 |
-
self.max_seq_len_cached = seq_len
|
134 |
-
|
135 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
136 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
137 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
138 |
-
|
139 |
-
@torch.no_grad()
|
140 |
-
def forward(self, x, position_ids):
|
141 |
-
if "dynamic" in self.rope_type:
|
142 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
143 |
-
|
144 |
-
# Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for thw grids
|
145 |
-
# So we expand the inv_freq to shape (3, ...)
|
146 |
-
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
147 |
-
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
148 |
-
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
149 |
-
device_type = x.device.type
|
150 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
151 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
152 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
153 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
154 |
-
cos = emb.cos()
|
155 |
-
sin = emb.sin()
|
156 |
-
|
157 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
158 |
-
cos = cos * self.attention_scaling
|
159 |
-
sin = sin * self.attention_scaling
|
160 |
-
|
161 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
162 |
|
|
|
163 |
|
164 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
165 |
def rotate_half(x):
|
@@ -169,58 +60,13 @@ def rotate_half(x):
|
|
169 |
return torch.cat((-x2, x1), dim=-1)
|
170 |
|
171 |
|
172 |
-
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
173 |
-
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
174 |
-
|
175 |
-
Explanation:
|
176 |
-
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
177 |
-
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
178 |
-
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
|
179 |
-
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
180 |
-
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
181 |
-
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
182 |
-
difference with modern LLMs.
|
183 |
-
|
184 |
-
Args:
|
185 |
-
q (`torch.Tensor`): The query tensor.
|
186 |
-
k (`torch.Tensor`): The key tensor.
|
187 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
188 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
189 |
-
position_ids (`torch.Tensor`):
|
190 |
-
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
191 |
-
used to pass offsetted position ids when working with a KV-cache.
|
192 |
-
mrope_section(`List(int)`):
|
193 |
-
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
194 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
195 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
196 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
197 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
198 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
199 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
200 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
201 |
-
Returns:
|
202 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
203 |
-
"""
|
204 |
-
mrope_section = mrope_section * 2
|
205 |
-
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
206 |
-
unsqueeze_dim
|
207 |
-
)
|
208 |
-
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
209 |
-
unsqueeze_dim
|
210 |
-
)
|
211 |
-
|
212 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
213 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
214 |
-
return q_embed, k_embed
|
215 |
-
|
216 |
-
|
217 |
def apply_rotary_pos_emb_vision(
|
218 |
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
219 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
220 |
orig_q_dtype = q.dtype
|
221 |
orig_k_dtype = k.dtype
|
222 |
q, k = q.float(), k.float()
|
223 |
-
cos, sin = cos.unsqueeze(-2), sin.unsqueeze(-2)
|
224 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
225 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
226 |
q_embed = q_embed.to(orig_q_dtype)
|
@@ -318,8 +164,8 @@ class VisionAttention(nn.Module):
|
|
318 |
"removed and `position_embeddings` will be mandatory."
|
319 |
)
|
320 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
321 |
-
cos = emb.cos()
|
322 |
-
sin = emb.sin()
|
323 |
else:
|
324 |
cos, sin = position_embeddings
|
325 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
@@ -367,8 +213,8 @@ class VisionFlashAttention2(nn.Module):
|
|
367 |
"removed and `position_embeddings` will be mandatory."
|
368 |
)
|
369 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
370 |
-
cos = emb.cos()
|
371 |
-
sin = emb.sin()
|
372 |
else:
|
373 |
cos, sin = position_embeddings
|
374 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
@@ -405,8 +251,8 @@ class VisionSdpaAttention(nn.Module):
|
|
405 |
"removed and `position_embeddings` will be mandatory."
|
406 |
)
|
407 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
408 |
-
cos = emb.cos()
|
409 |
-
sin = emb.sin()
|
410 |
else:
|
411 |
cos, sin = position_embeddings
|
412 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
@@ -417,8 +263,10 @@ class VisionSdpaAttention(nn.Module):
|
|
417 |
q = q.transpose(0, 1)
|
418 |
k = k.transpose(0, 1)
|
419 |
v = v.transpose(0, 1)
|
420 |
-
attn_output = F.scaled_dot_product_attention(
|
421 |
-
|
|
|
|
|
422 |
attn_output = attn_output.reshape(seq_length, -1)
|
423 |
attn_output = self.proj(attn_output)
|
424 |
return attn_output
|
@@ -460,481 +308,10 @@ class Qwen2VLVisionBlock(nn.Module):
|
|
460 |
return hidden_states
|
461 |
|
462 |
|
463 |
-
|
464 |
-
class Qwen2RMSNorm(nn.Module):
|
465 |
-
def __init__(self, hidden_size, eps=1e-6):
|
466 |
-
"""
|
467 |
-
Qwen2RMSNorm is equivalent to T5LayerNorm
|
468 |
-
"""
|
469 |
-
super().__init__()
|
470 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
471 |
-
self.variance_epsilon = eps
|
472 |
-
|
473 |
-
def forward(self, hidden_states):
|
474 |
-
input_dtype = hidden_states.dtype
|
475 |
-
hidden_states = hidden_states.to(torch.float32)
|
476 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
477 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
478 |
-
return self.weight * hidden_states.to(input_dtype)
|
479 |
-
|
480 |
-
def extra_repr(self):
|
481 |
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
482 |
-
|
483 |
-
|
484 |
-
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
|
485 |
-
class Qwen2MLP(nn.Module):
|
486 |
-
def __init__(self, config):
|
487 |
-
super().__init__()
|
488 |
-
self.config = config
|
489 |
-
self.hidden_size = config.hidden_size
|
490 |
-
self.intermediate_size = config.intermediate_size
|
491 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
492 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
493 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
494 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
495 |
-
|
496 |
-
def forward(self, x):
|
497 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
498 |
-
return down_proj
|
499 |
-
|
500 |
-
|
501 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
502 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
503 |
-
"""
|
504 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
505 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
506 |
-
"""
|
507 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
508 |
-
if n_rep == 1:
|
509 |
-
return hidden_states
|
510 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
511 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
512 |
-
|
513 |
-
|
514 |
-
class Qwen2VLAttention(nn.Module):
|
515 |
-
"""
|
516 |
-
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
517 |
-
and "Generating Long Sequences with Sparse Transformers".
|
518 |
-
"""
|
519 |
-
|
520 |
-
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
|
521 |
-
super().__init__()
|
522 |
-
self.config = config
|
523 |
-
self.layer_idx = layer_idx
|
524 |
-
if layer_idx is None:
|
525 |
-
logger.warning_once(
|
526 |
-
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
527 |
-
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
528 |
-
"when creating this class."
|
529 |
-
)
|
530 |
-
|
531 |
-
self.hidden_size = config.hidden_size
|
532 |
-
self.num_heads = config.num_attention_heads
|
533 |
-
self.head_dim = self.hidden_size // self.num_heads
|
534 |
-
self.num_key_value_heads = config.num_key_value_heads
|
535 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
536 |
-
self.is_causal = True
|
537 |
-
self.attention_dropout = config.attention_dropout
|
538 |
-
self.rope_scaling = config.rope_scaling
|
539 |
-
|
540 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
541 |
-
raise ValueError(
|
542 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
543 |
-
f" and `num_heads`: {self.num_heads})."
|
544 |
-
)
|
545 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
546 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
547 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
548 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
549 |
-
|
550 |
-
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
551 |
-
|
552 |
-
def forward(
|
553 |
-
self,
|
554 |
-
hidden_states: torch.Tensor,
|
555 |
-
attention_mask: Optional[torch.Tensor] = None,
|
556 |
-
position_ids: Optional[torch.LongTensor] = None,
|
557 |
-
past_key_value: Optional[Cache] = None,
|
558 |
-
output_attentions: bool = False,
|
559 |
-
use_cache: bool = False,
|
560 |
-
cache_position: Optional[torch.LongTensor] = None,
|
561 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
562 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
563 |
-
bsz, q_len, _ = hidden_states.size()
|
564 |
-
|
565 |
-
query_states = self.q_proj(hidden_states)
|
566 |
-
key_states = self.k_proj(hidden_states)
|
567 |
-
value_states = self.v_proj(hidden_states)
|
568 |
-
|
569 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
570 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
571 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
572 |
-
|
573 |
-
cos, sin = position_embeddings
|
574 |
-
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
575 |
-
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
576 |
-
)
|
577 |
-
|
578 |
-
if past_key_value is not None:
|
579 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
580 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
581 |
-
|
582 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
583 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
584 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
585 |
-
|
586 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
587 |
-
|
588 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
589 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
590 |
-
attn_weights = attn_weights + causal_mask
|
591 |
-
|
592 |
-
# Fix precision issues in Qwen2-VL float16 inference
|
593 |
-
# Replace inf values with zeros in attention weights to prevent NaN propagation
|
594 |
-
if query_states.dtype == torch.float16:
|
595 |
-
attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights)
|
596 |
-
|
597 |
-
# upcast attention to fp32
|
598 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
599 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
600 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
601 |
-
|
602 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
603 |
-
raise ValueError(
|
604 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
605 |
-
f" {attn_output.size()}"
|
606 |
-
)
|
607 |
-
|
608 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
609 |
-
attn_output = attn_output.reshape(bsz, q_len, -1)
|
610 |
-
|
611 |
-
attn_output = self.o_proj(attn_output)
|
612 |
-
|
613 |
-
if not output_attentions:
|
614 |
-
attn_weights = None
|
615 |
-
|
616 |
-
return attn_output, attn_weights, past_key_value
|
617 |
-
|
618 |
-
|
619 |
-
class Qwen2VLFlashAttention2(Qwen2VLAttention):
|
620 |
-
"""
|
621 |
-
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention`
|
622 |
-
as the weights of the module stays untouched. The only required change would be on the forward pass
|
623 |
-
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
624 |
-
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
625 |
-
config.max_window_layers layers.
|
626 |
-
"""
|
627 |
-
|
628 |
-
def __init__(self, *args, **kwargs):
|
629 |
-
super().__init__(*args, **kwargs)
|
630 |
-
|
631 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
632 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
633 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
634 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
635 |
-
|
636 |
-
def forward(
|
637 |
-
self,
|
638 |
-
hidden_states: torch.Tensor,
|
639 |
-
attention_mask: Optional[torch.Tensor] = None,
|
640 |
-
position_ids: Optional[torch.LongTensor] = None,
|
641 |
-
past_key_value: Optional[Cache] = None,
|
642 |
-
output_attentions: bool = False,
|
643 |
-
use_cache: bool = False,
|
644 |
-
cache_position: Optional[torch.LongTensor] = None,
|
645 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
646 |
-
):
|
647 |
-
bsz, q_len, _ = hidden_states.size()
|
648 |
-
|
649 |
-
query_states = self.q_proj(hidden_states)
|
650 |
-
key_states = self.k_proj(hidden_states)
|
651 |
-
value_states = self.v_proj(hidden_states)
|
652 |
-
|
653 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
654 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
655 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
656 |
-
|
657 |
-
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
658 |
-
cos, sin = position_embeddings
|
659 |
-
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
660 |
-
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
661 |
-
)
|
662 |
-
|
663 |
-
if past_key_value is not None:
|
664 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
665 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
666 |
-
|
667 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
668 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
669 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
670 |
-
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
671 |
-
|
672 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
673 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
674 |
-
# cast them back in float16 just to be sure everything works as expected.
|
675 |
-
input_dtype = query_states.dtype
|
676 |
-
if input_dtype == torch.float32:
|
677 |
-
if torch.is_autocast_enabled():
|
678 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
679 |
-
# Handle the case where the model is quantized
|
680 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
681 |
-
target_dtype = self.config._pre_quantization_dtype
|
682 |
-
else:
|
683 |
-
target_dtype = self.q_proj.weight.dtype
|
684 |
-
|
685 |
-
logger.warning_once(
|
686 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
687 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
688 |
-
f" {target_dtype}."
|
689 |
-
)
|
690 |
-
|
691 |
-
query_states = query_states.to(target_dtype)
|
692 |
-
key_states = key_states.to(target_dtype)
|
693 |
-
value_states = value_states.to(target_dtype)
|
694 |
-
|
695 |
-
# Reashape to the expected shape for Flash Attention
|
696 |
-
query_states = query_states.transpose(1, 2)
|
697 |
-
key_states = key_states.transpose(1, 2)
|
698 |
-
value_states = value_states.transpose(1, 2)
|
699 |
-
|
700 |
-
if (
|
701 |
-
self.config.use_sliding_window
|
702 |
-
and getattr(self.config, "sliding_window", None) is not None
|
703 |
-
and self.layer_idx >= self.config.max_window_layers
|
704 |
-
):
|
705 |
-
sliding_window = self.config.sliding_window
|
706 |
-
else:
|
707 |
-
sliding_window = None
|
708 |
-
|
709 |
-
attn_output = _flash_attention_forward(
|
710 |
-
query_states,
|
711 |
-
key_states,
|
712 |
-
value_states,
|
713 |
-
attention_mask,
|
714 |
-
q_len,
|
715 |
-
dropout=dropout_rate,
|
716 |
-
sliding_window=sliding_window,
|
717 |
-
is_causal=self.is_causal,
|
718 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
719 |
-
)
|
720 |
-
|
721 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
722 |
-
attn_output = self.o_proj(attn_output)
|
723 |
-
|
724 |
-
if not output_attentions:
|
725 |
-
attn_weights = None
|
726 |
-
|
727 |
-
return attn_output, attn_weights, past_key_value
|
728 |
-
|
729 |
-
|
730 |
-
class Qwen2VLSdpaAttention(Qwen2VLAttention):
|
731 |
-
"""
|
732 |
-
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
733 |
-
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
734 |
-
SDPA API.
|
735 |
-
"""
|
736 |
-
|
737 |
-
# Adapted from Qwen2Attention.forward
|
738 |
-
def forward(
|
739 |
-
self,
|
740 |
-
hidden_states: torch.Tensor,
|
741 |
-
attention_mask: Optional[torch.Tensor] = None,
|
742 |
-
position_ids: Optional[torch.LongTensor] = None,
|
743 |
-
past_key_value: Optional[Cache] = None,
|
744 |
-
output_attentions: bool = False,
|
745 |
-
use_cache: bool = False,
|
746 |
-
cache_position: Optional[torch.LongTensor] = None,
|
747 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
748 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
749 |
-
if output_attentions:
|
750 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
751 |
-
logger.warning_once(
|
752 |
-
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
753 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
754 |
-
)
|
755 |
-
return super().forward(
|
756 |
-
hidden_states=hidden_states,
|
757 |
-
attention_mask=attention_mask,
|
758 |
-
position_ids=position_ids,
|
759 |
-
past_key_value=past_key_value,
|
760 |
-
output_attentions=output_attentions,
|
761 |
-
use_cache=use_cache,
|
762 |
-
cache_position=cache_position,
|
763 |
-
position_embeddings=position_embeddings,
|
764 |
-
)
|
765 |
-
|
766 |
-
bsz, q_len, _ = hidden_states.size()
|
767 |
-
|
768 |
-
query_states = self.q_proj(hidden_states)
|
769 |
-
key_states = self.k_proj(hidden_states)
|
770 |
-
value_states = self.v_proj(hidden_states)
|
771 |
-
|
772 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
773 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
774 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
775 |
-
|
776 |
-
cos, sin = position_embeddings
|
777 |
-
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
778 |
-
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
779 |
-
)
|
780 |
-
|
781 |
-
if past_key_value is not None:
|
782 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
783 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
784 |
-
|
785 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
786 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
787 |
-
|
788 |
-
causal_mask = attention_mask
|
789 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
790 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
791 |
-
|
792 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
793 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
794 |
-
if query_states.device.type == "cuda" and attention_mask is not None:
|
795 |
-
query_states = query_states.contiguous()
|
796 |
-
key_states = key_states.contiguous()
|
797 |
-
value_states = value_states.contiguous()
|
798 |
-
|
799 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
800 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
801 |
-
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
802 |
-
is_causal = True if causal_mask is None and q_len > 1 else False
|
803 |
-
|
804 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
805 |
-
query_states,
|
806 |
-
key_states,
|
807 |
-
value_states,
|
808 |
-
attn_mask=causal_mask,
|
809 |
-
dropout_p=self.attention_dropout if self.training else 0.0,
|
810 |
-
is_causal=is_causal,
|
811 |
-
)
|
812 |
-
|
813 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
814 |
-
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
815 |
-
|
816 |
-
attn_output = self.o_proj(attn_output)
|
817 |
-
|
818 |
-
return attn_output, None, past_key_value
|
819 |
-
|
820 |
-
|
821 |
-
QWEN2_VL_ATTENTION_CLASSES = {
|
822 |
-
"eager": Qwen2VLAttention,
|
823 |
-
"flash_attention_2": Qwen2VLFlashAttention2,
|
824 |
-
"sdpa": Qwen2VLSdpaAttention,
|
825 |
-
}
|
826 |
-
|
827 |
-
|
828 |
-
class Qwen2VLDecoderLayer(nn.Module):
|
829 |
-
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
830 |
-
super().__init__()
|
831 |
-
self.hidden_size = config.hidden_size
|
832 |
-
|
833 |
-
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
834 |
-
logger.warning_once(
|
835 |
-
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
836 |
-
"unexpected results may be encountered."
|
837 |
-
)
|
838 |
-
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
839 |
-
|
840 |
-
self.mlp = Qwen2MLP(config)
|
841 |
-
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
842 |
-
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
843 |
-
|
844 |
-
def forward(
|
845 |
-
self,
|
846 |
-
hidden_states: torch.Tensor,
|
847 |
-
attention_mask: Optional[torch.Tensor] = None,
|
848 |
-
position_ids: Optional[torch.LongTensor] = None,
|
849 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
850 |
-
output_attentions: Optional[bool] = False,
|
851 |
-
use_cache: Optional[bool] = False,
|
852 |
-
cache_position: Optional[torch.LongTensor] = None,
|
853 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
854 |
-
**kwargs,
|
855 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
856 |
-
"""
|
857 |
-
Args:
|
858 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
859 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
860 |
-
`(batch, sequence_length)` where padding elements are indicated by 0.
|
861 |
-
output_attentions (`bool`, *optional*):
|
862 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
863 |
-
returned tensors for more detail.
|
864 |
-
use_cache (`bool`, *optional*):
|
865 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
866 |
-
(see `past_key_values`).
|
867 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
868 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
869 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
870 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
871 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
872 |
-
with `head_dim` being the embedding dimension of each attention head.
|
873 |
-
kwargs (`dict`, *optional*):
|
874 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
875 |
-
into the model
|
876 |
-
"""
|
877 |
-
|
878 |
-
residual = hidden_states
|
879 |
-
|
880 |
-
hidden_states = self.input_layernorm(hidden_states)
|
881 |
-
|
882 |
-
# Self Attention
|
883 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
884 |
-
hidden_states=hidden_states,
|
885 |
-
attention_mask=attention_mask,
|
886 |
-
position_ids=position_ids,
|
887 |
-
past_key_value=past_key_value,
|
888 |
-
output_attentions=output_attentions,
|
889 |
-
use_cache=use_cache,
|
890 |
-
cache_position=cache_position,
|
891 |
-
position_embeddings=position_embeddings,
|
892 |
-
)
|
893 |
-
hidden_states = residual + hidden_states
|
894 |
-
|
895 |
-
# Fully Connected
|
896 |
-
residual = hidden_states
|
897 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
898 |
-
hidden_states = self.mlp(hidden_states)
|
899 |
-
hidden_states = residual + hidden_states
|
900 |
-
|
901 |
-
outputs = (hidden_states,)
|
902 |
-
|
903 |
-
if output_attentions:
|
904 |
-
outputs += (self_attn_weights,)
|
905 |
-
|
906 |
-
if use_cache:
|
907 |
-
outputs += (present_key_value,)
|
908 |
-
|
909 |
-
return outputs
|
910 |
-
|
911 |
-
|
912 |
-
QWEN2VL_START_DOCSTRING = r"""
|
913 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
914 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
915 |
-
etc.)
|
916 |
-
|
917 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
918 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
919 |
-
and behavior.
|
920 |
-
|
921 |
-
Parameters:
|
922 |
-
config ([`Qwen2VLConfig`]):
|
923 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
924 |
-
load the weights associated with the model, only the configuration. Check out the
|
925 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
926 |
-
"""
|
927 |
-
|
928 |
-
|
929 |
-
@add_start_docstrings(
|
930 |
-
"The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.",
|
931 |
-
QWEN2VL_START_DOCSTRING,
|
932 |
-
)
|
933 |
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
934 |
-
config_class = Qwen2VLConfig
|
935 |
base_model_prefix = "model"
|
936 |
supports_gradient_checkpointing = True
|
937 |
-
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
|
938 |
_skip_keys_device_placement = "past_key_values"
|
939 |
_supports_flash_attn_2 = True
|
940 |
_supports_sdpa = True
|
@@ -942,7 +319,7 @@ class Qwen2VLPreTrainedModel(PreTrainedModel):
|
|
942 |
_supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions`
|
943 |
|
944 |
def _init_weights(self, module):
|
945 |
-
std = self.config.initializer_range
|
946 |
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
947 |
module.weight.data.normal_(mean=0.0, std=std)
|
948 |
if module.bias is not None:
|
@@ -951,8 +328,12 @@ class Qwen2VLPreTrainedModel(PreTrainedModel):
|
|
951 |
module.weight.data.normal_(mean=0.0, std=std)
|
952 |
if module.padding_idx is not None:
|
953 |
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
|
954 |
|
955 |
|
|
|
956 |
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
957 |
config_class = Qwen2VLVisionConfig
|
958 |
_no_split_modules = ["Qwen2VLVisionBlock"]
|
@@ -1014,7 +395,12 @@ class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
|
1014 |
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
1015 |
return rotary_pos_emb
|
1016 |
|
|
|
1017 |
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
1018 |
hidden_states = self.patch_embed(hidden_states)
|
1019 |
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
1020 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
@@ -1039,942 +425,3 @@ class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
|
1039 |
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
|
1040 |
|
1041 |
return self.merger(hidden_states)
|
1042 |
-
|
1043 |
-
|
1044 |
-
@add_start_docstrings(
|
1045 |
-
"The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.",
|
1046 |
-
QWEN2VL_START_DOCSTRING,
|
1047 |
-
)
|
1048 |
-
class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
1049 |
-
def __init__(self, config: Qwen2VLConfig):
|
1050 |
-
super().__init__(config)
|
1051 |
-
self.padding_idx = config.pad_token_id
|
1052 |
-
self.vocab_size = config.vocab_size
|
1053 |
-
|
1054 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1055 |
-
self.layers = nn.ModuleList(
|
1056 |
-
[Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1057 |
-
)
|
1058 |
-
self._attn_implementation = config._attn_implementation
|
1059 |
-
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1060 |
-
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
1061 |
-
|
1062 |
-
self.gradient_checkpointing = False
|
1063 |
-
# Initialize weights and apply final processing
|
1064 |
-
self.post_init()
|
1065 |
-
|
1066 |
-
def get_input_embeddings(self):
|
1067 |
-
return self.embed_tokens
|
1068 |
-
|
1069 |
-
def set_input_embeddings(self, value):
|
1070 |
-
self.embed_tokens = value
|
1071 |
-
|
1072 |
-
def forward(
|
1073 |
-
self,
|
1074 |
-
input_ids: torch.LongTensor = None,
|
1075 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1076 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1077 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1078 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1079 |
-
use_cache: Optional[bool] = None,
|
1080 |
-
output_attentions: Optional[bool] = None,
|
1081 |
-
output_hidden_states: Optional[bool] = None,
|
1082 |
-
return_dict: Optional[bool] = None,
|
1083 |
-
cache_position: Optional[torch.LongTensor] = None,
|
1084 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1085 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1086 |
-
output_hidden_states = (
|
1087 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1088 |
-
)
|
1089 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1090 |
-
|
1091 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1092 |
-
|
1093 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
1094 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1095 |
-
|
1096 |
-
if self.gradient_checkpointing and self.training:
|
1097 |
-
if use_cache:
|
1098 |
-
logger.warning_once(
|
1099 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1100 |
-
)
|
1101 |
-
use_cache = False
|
1102 |
-
|
1103 |
-
# torch.jit.trace() doesn't support cache objects in the output
|
1104 |
-
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
1105 |
-
past_key_values = DynamicCache()
|
1106 |
-
|
1107 |
-
if inputs_embeds is None:
|
1108 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
1109 |
-
|
1110 |
-
if cache_position is None:
|
1111 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1112 |
-
cache_position = torch.arange(
|
1113 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1114 |
-
)
|
1115 |
-
|
1116 |
-
# the hard coded `3` is for temporal, height and width.
|
1117 |
-
if position_ids is None:
|
1118 |
-
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
1119 |
-
elif position_ids.dim() == 2:
|
1120 |
-
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
1121 |
-
|
1122 |
-
causal_mask = self._update_causal_mask(
|
1123 |
-
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1124 |
-
)
|
1125 |
-
|
1126 |
-
hidden_states = inputs_embeds
|
1127 |
-
|
1128 |
-
# create position embeddings to be shared across the decoder layers
|
1129 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1130 |
-
|
1131 |
-
# decoder layers
|
1132 |
-
all_hidden_states = () if output_hidden_states else None
|
1133 |
-
all_self_attns = () if output_attentions else None
|
1134 |
-
next_decoder_cache = None
|
1135 |
-
|
1136 |
-
for decoder_layer in self.layers:
|
1137 |
-
if output_hidden_states:
|
1138 |
-
all_hidden_states += (hidden_states,)
|
1139 |
-
|
1140 |
-
if self.gradient_checkpointing and self.training:
|
1141 |
-
layer_outputs = self._gradient_checkpointing_func(
|
1142 |
-
decoder_layer.__call__,
|
1143 |
-
hidden_states,
|
1144 |
-
causal_mask,
|
1145 |
-
position_ids,
|
1146 |
-
past_key_values,
|
1147 |
-
output_attentions,
|
1148 |
-
use_cache,
|
1149 |
-
cache_position,
|
1150 |
-
position_embeddings,
|
1151 |
-
)
|
1152 |
-
else:
|
1153 |
-
layer_outputs = decoder_layer(
|
1154 |
-
hidden_states,
|
1155 |
-
attention_mask=causal_mask,
|
1156 |
-
position_ids=position_ids,
|
1157 |
-
past_key_value=past_key_values,
|
1158 |
-
output_attentions=output_attentions,
|
1159 |
-
use_cache=use_cache,
|
1160 |
-
cache_position=cache_position,
|
1161 |
-
position_embeddings=position_embeddings,
|
1162 |
-
)
|
1163 |
-
|
1164 |
-
hidden_states = layer_outputs[0]
|
1165 |
-
|
1166 |
-
if use_cache:
|
1167 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1168 |
-
|
1169 |
-
if output_attentions:
|
1170 |
-
all_self_attns += (layer_outputs[1],)
|
1171 |
-
|
1172 |
-
hidden_states = self.norm(hidden_states)
|
1173 |
-
|
1174 |
-
# add hidden states from the last decoder layer
|
1175 |
-
if output_hidden_states:
|
1176 |
-
all_hidden_states += (hidden_states,)
|
1177 |
-
|
1178 |
-
next_cache = next_decoder_cache if use_cache else None
|
1179 |
-
|
1180 |
-
if not return_dict:
|
1181 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1182 |
-
return BaseModelOutputWithPast(
|
1183 |
-
last_hidden_state=hidden_states,
|
1184 |
-
past_key_values=next_cache,
|
1185 |
-
hidden_states=all_hidden_states,
|
1186 |
-
attentions=all_self_attns,
|
1187 |
-
)
|
1188 |
-
|
1189 |
-
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Qwen2VL
|
1190 |
-
def _update_causal_mask(
|
1191 |
-
self,
|
1192 |
-
attention_mask: torch.Tensor,
|
1193 |
-
input_tensor: torch.Tensor,
|
1194 |
-
cache_position: torch.Tensor,
|
1195 |
-
past_key_values: Cache,
|
1196 |
-
output_attentions: bool,
|
1197 |
-
):
|
1198 |
-
if self.config._attn_implementation == "flash_attention_2":
|
1199 |
-
if attention_mask is not None and past_key_values is not None:
|
1200 |
-
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
1201 |
-
if is_padding_right:
|
1202 |
-
raise ValueError(
|
1203 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
1204 |
-
" this may lead to unexpected behaviour for Flash Attention version of Qwen2VL. Make sure to "
|
1205 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1206 |
-
)
|
1207 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
1208 |
-
return attention_mask
|
1209 |
-
return None
|
1210 |
-
|
1211 |
-
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1212 |
-
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1213 |
-
# to infer the attention mask.
|
1214 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1215 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
1216 |
-
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
1217 |
-
|
1218 |
-
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1219 |
-
if (
|
1220 |
-
self.config._attn_implementation == "sdpa"
|
1221 |
-
and not (using_static_cache or using_sliding_window_cache)
|
1222 |
-
and not output_attentions
|
1223 |
-
):
|
1224 |
-
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1225 |
-
attention_mask,
|
1226 |
-
inputs_embeds=input_tensor,
|
1227 |
-
past_key_values_length=past_seen_tokens,
|
1228 |
-
sliding_window=self.config.sliding_window,
|
1229 |
-
is_training=self.training,
|
1230 |
-
):
|
1231 |
-
return None
|
1232 |
-
|
1233 |
-
dtype, device = input_tensor.dtype, input_tensor.device
|
1234 |
-
min_dtype = torch.finfo(dtype).min
|
1235 |
-
sequence_length = input_tensor.shape[1]
|
1236 |
-
# SlidingWindowCache or StaticCache
|
1237 |
-
if using_sliding_window_cache or using_static_cache:
|
1238 |
-
target_length = past_key_values.get_max_cache_shape()
|
1239 |
-
# DynamicCache or no cache
|
1240 |
-
else:
|
1241 |
-
target_length = (
|
1242 |
-
attention_mask.shape[-1]
|
1243 |
-
if isinstance(attention_mask, torch.Tensor)
|
1244 |
-
else past_seen_tokens + sequence_length + 1
|
1245 |
-
)
|
1246 |
-
|
1247 |
-
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1248 |
-
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1249 |
-
attention_mask,
|
1250 |
-
sequence_length=sequence_length,
|
1251 |
-
target_length=target_length,
|
1252 |
-
dtype=dtype,
|
1253 |
-
device=device,
|
1254 |
-
cache_position=cache_position,
|
1255 |
-
batch_size=input_tensor.shape[0],
|
1256 |
-
config=self.config,
|
1257 |
-
past_key_values=past_key_values,
|
1258 |
-
)
|
1259 |
-
|
1260 |
-
if (
|
1261 |
-
self.config._attn_implementation == "sdpa"
|
1262 |
-
and attention_mask is not None
|
1263 |
-
and attention_mask.device.type in ["cuda", "xpu"]
|
1264 |
-
and not output_attentions
|
1265 |
-
):
|
1266 |
-
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1267 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1268 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1269 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1270 |
-
|
1271 |
-
return causal_mask
|
1272 |
-
|
1273 |
-
@staticmethod
|
1274 |
-
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Qwen2VL
|
1275 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1276 |
-
attention_mask: torch.Tensor,
|
1277 |
-
sequence_length: int,
|
1278 |
-
target_length: int,
|
1279 |
-
dtype: torch.dtype,
|
1280 |
-
device: torch.device,
|
1281 |
-
cache_position: torch.Tensor,
|
1282 |
-
batch_size: int,
|
1283 |
-
config: Qwen2VLConfig,
|
1284 |
-
past_key_values: Cache,
|
1285 |
-
):
|
1286 |
-
"""
|
1287 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1288 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1289 |
-
|
1290 |
-
Args:
|
1291 |
-
attention_mask (`torch.Tensor`):
|
1292 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
1293 |
-
sequence_length (`int`):
|
1294 |
-
The sequence length being processed.
|
1295 |
-
target_length (`int`):
|
1296 |
-
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
1297 |
-
dtype (`torch.dtype`):
|
1298 |
-
The dtype to use for the 4D attention mask.
|
1299 |
-
device (`torch.device`):
|
1300 |
-
The device to plcae the 4D attention mask on.
|
1301 |
-
cache_position (`torch.Tensor`):
|
1302 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
1303 |
-
batch_size (`torch.Tensor`):
|
1304 |
-
Batch size.
|
1305 |
-
config (`Qwen2VLConfig`):
|
1306 |
-
The model's configuration class
|
1307 |
-
past_key_values (`Cache`):
|
1308 |
-
The cache class that is being used currently to generate
|
1309 |
-
"""
|
1310 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
1311 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1312 |
-
causal_mask = attention_mask
|
1313 |
-
else:
|
1314 |
-
min_dtype = torch.finfo(dtype).min
|
1315 |
-
causal_mask = torch.full(
|
1316 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1317 |
-
)
|
1318 |
-
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1319 |
-
if config.sliding_window is not None:
|
1320 |
-
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
1321 |
-
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
1322 |
-
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
1323 |
-
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
1324 |
-
cache_position.reshape(-1, 1) - config.sliding_window
|
1325 |
-
)
|
1326 |
-
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
1327 |
-
causal_mask *= diagonal_attend_mask
|
1328 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1329 |
-
if attention_mask is not None:
|
1330 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1331 |
-
if attention_mask.shape[-1] > target_length:
|
1332 |
-
attention_mask = attention_mask[:, :target_length]
|
1333 |
-
mask_length = attention_mask.shape[-1]
|
1334 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
1335 |
-
causal_mask.device
|
1336 |
-
)
|
1337 |
-
padding_mask = padding_mask == 0
|
1338 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1339 |
-
padding_mask, min_dtype
|
1340 |
-
)
|
1341 |
-
return causal_mask
|
1342 |
-
|
1343 |
-
|
1344 |
-
QWEN2_VL_INPUTS_DOCSTRING = r"""
|
1345 |
-
Args:
|
1346 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1347 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1348 |
-
it.
|
1349 |
-
|
1350 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1351 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1352 |
-
|
1353 |
-
[What are input IDs?](../glossary#input-ids)
|
1354 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1355 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1356 |
-
|
1357 |
-
- 1 for tokens that are **not masked**,
|
1358 |
-
- 0 for tokens that are **masked**.
|
1359 |
-
|
1360 |
-
[What are attention masks?](../glossary#attention-mask)
|
1361 |
-
|
1362 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1363 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1364 |
-
|
1365 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1366 |
-
`past_key_values`).
|
1367 |
-
|
1368 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1369 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1370 |
-
information on the default strategy.
|
1371 |
-
|
1372 |
-
- 1 indicates the head is **not masked**,
|
1373 |
-
- 0 indicates the head is **masked**.
|
1374 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1375 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1376 |
-
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
1377 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1378 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1379 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1380 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1381 |
-
|
1382 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1383 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1384 |
-
|
1385 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1386 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1387 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1388 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1389 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1390 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1391 |
-
model's internal embedding lookup matrix.
|
1392 |
-
use_cache (`bool`, *optional*):
|
1393 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1394 |
-
`past_key_values`).
|
1395 |
-
output_attentions (`bool`, *optional*):
|
1396 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1397 |
-
tensors for more detail.
|
1398 |
-
output_hidden_states (`bool`, *optional*):
|
1399 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1400 |
-
more detail.
|
1401 |
-
return_dict (`bool`, *optional*):
|
1402 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1403 |
-
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
|
1404 |
-
The tensors corresponding to the input images. Pixel values can be obtained using
|
1405 |
-
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
|
1406 |
-
[`Qwen2VLImageProcessor`] for processing images.
|
1407 |
-
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
1408 |
-
The tensors corresponding to the input videos. Pixel values can be obtained using
|
1409 |
-
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
|
1410 |
-
[`Qwen2VLImageProcessor`] for processing videos.
|
1411 |
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1412 |
-
The temporal, height and width of feature shape of each image in LLM.
|
1413 |
-
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1414 |
-
The temporal, height and width of feature shape of each video in LLM.
|
1415 |
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
1416 |
-
The rope index difference between sequence length and multimodal rope.
|
1417 |
-
"""
|
1418 |
-
|
1419 |
-
|
1420 |
-
class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel, GenerationMixin):
|
1421 |
-
_tied_weights_keys = ["lm_head.weight"]
|
1422 |
-
|
1423 |
-
def __init__(self, config):
|
1424 |
-
super().__init__(config)
|
1425 |
-
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(config.vision_config)
|
1426 |
-
self.model = Qwen2VLModel(config)
|
1427 |
-
self.vocab_size = config.vocab_size
|
1428 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1429 |
-
self.rope_deltas = None # cache rope_deltas here
|
1430 |
-
|
1431 |
-
# Initialize weights and apply final processing
|
1432 |
-
self.post_init()
|
1433 |
-
|
1434 |
-
def get_input_embeddings(self):
|
1435 |
-
return self.model.embed_tokens
|
1436 |
-
|
1437 |
-
def set_input_embeddings(self, value):
|
1438 |
-
self.model.embed_tokens = value
|
1439 |
-
|
1440 |
-
def get_output_embeddings(self):
|
1441 |
-
return self.lm_head
|
1442 |
-
|
1443 |
-
def set_output_embeddings(self, new_embeddings):
|
1444 |
-
self.lm_head = new_embeddings
|
1445 |
-
|
1446 |
-
def set_decoder(self, decoder):
|
1447 |
-
self.model = decoder
|
1448 |
-
|
1449 |
-
def get_decoder(self):
|
1450 |
-
return self.model
|
1451 |
-
|
1452 |
-
def get_rope_index(
|
1453 |
-
self,
|
1454 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1455 |
-
image_grid_thw: Optional[torch.LongTensor] = None,
|
1456 |
-
video_grid_thw: Optional[torch.LongTensor] = None,
|
1457 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1458 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1459 |
-
"""
|
1460 |
-
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
1461 |
-
|
1462 |
-
Explanation:
|
1463 |
-
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
1464 |
-
|
1465 |
-
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.
|
1466 |
-
Examples:
|
1467 |
-
input_ids: [T T T T T], here T is for text.
|
1468 |
-
temporal position_ids: [0, 1, 2, 3, 4]
|
1469 |
-
height position_ids: [0, 1, 2, 3, 4]
|
1470 |
-
width position_ids: [0, 1, 2, 3, 4]
|
1471 |
-
|
1472 |
-
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
1473 |
-
and 1D rotary position embeddin for text part.
|
1474 |
-
Examples:
|
1475 |
-
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
1476 |
-
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
1477 |
-
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
1478 |
-
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
1479 |
-
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
1480 |
-
text temporal position_ids: [3, 4, 5, 6, 7]
|
1481 |
-
text height position_ids: [3, 4, 5, 6, 7]
|
1482 |
-
text width position_ids: [3, 4, 5, 6, 7]
|
1483 |
-
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
1484 |
-
|
1485 |
-
Args:
|
1486 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1487 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1488 |
-
it.
|
1489 |
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1490 |
-
The temporal, height and width of feature shape of each image in LLM.
|
1491 |
-
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1492 |
-
The temporal, height and width of feature shape of each video in LLM.
|
1493 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1494 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1495 |
-
|
1496 |
-
- 1 for tokens that are **not masked**,
|
1497 |
-
- 0 for tokens that are **masked**.
|
1498 |
-
|
1499 |
-
Returns:
|
1500 |
-
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
1501 |
-
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
1502 |
-
"""
|
1503 |
-
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
1504 |
-
image_token_id = self.config.image_token_id
|
1505 |
-
video_token_id = self.config.video_token_id
|
1506 |
-
vision_start_token_id = self.config.vision_start_token_id
|
1507 |
-
mrope_position_deltas = []
|
1508 |
-
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
1509 |
-
total_input_ids = input_ids
|
1510 |
-
if attention_mask is None:
|
1511 |
-
attention_mask = torch.ones_like(total_input_ids)
|
1512 |
-
position_ids = torch.ones(
|
1513 |
-
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
1514 |
-
)
|
1515 |
-
image_index, video_index = 0, 0
|
1516 |
-
for i, input_ids in enumerate(total_input_ids):
|
1517 |
-
input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
|
1518 |
-
image_nums, video_nums = 0, 0
|
1519 |
-
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
1520 |
-
vision_tokens = input_ids[vision_start_indices + 1]
|
1521 |
-
image_nums = (vision_tokens == image_token_id).sum()
|
1522 |
-
video_nums = (vision_tokens == video_token_id).sum()
|
1523 |
-
input_tokens = input_ids.tolist()
|
1524 |
-
llm_pos_ids_list: list = []
|
1525 |
-
st = 0
|
1526 |
-
remain_images, remain_videos = image_nums, video_nums
|
1527 |
-
for _ in range(image_nums + video_nums):
|
1528 |
-
if image_token_id in input_tokens and remain_images > 0:
|
1529 |
-
ed_image = input_tokens.index(image_token_id, st)
|
1530 |
-
else:
|
1531 |
-
ed_image = len(input_tokens) + 1
|
1532 |
-
if video_token_id in input_tokens and remain_videos > 0:
|
1533 |
-
ed_video = input_tokens.index(video_token_id, st)
|
1534 |
-
else:
|
1535 |
-
ed_video = len(input_tokens) + 1
|
1536 |
-
if ed_image < ed_video:
|
1537 |
-
t, h, w = (
|
1538 |
-
image_grid_thw[image_index][0],
|
1539 |
-
image_grid_thw[image_index][1],
|
1540 |
-
image_grid_thw[image_index][2],
|
1541 |
-
)
|
1542 |
-
image_index += 1
|
1543 |
-
remain_images -= 1
|
1544 |
-
ed = ed_image
|
1545 |
-
else:
|
1546 |
-
t, h, w = (
|
1547 |
-
video_grid_thw[video_index][0],
|
1548 |
-
video_grid_thw[video_index][1],
|
1549 |
-
video_grid_thw[video_index][2],
|
1550 |
-
)
|
1551 |
-
video_index += 1
|
1552 |
-
remain_videos -= 1
|
1553 |
-
ed = ed_video
|
1554 |
-
llm_grid_t, llm_grid_h, llm_grid_w = (
|
1555 |
-
t.item(),
|
1556 |
-
h.item() // spatial_merge_size,
|
1557 |
-
w.item() // spatial_merge_size,
|
1558 |
-
)
|
1559 |
-
text_len = ed - st
|
1560 |
-
|
1561 |
-
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
1562 |
-
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
1563 |
-
|
1564 |
-
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
1565 |
-
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
1566 |
-
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
1567 |
-
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
1568 |
-
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
1569 |
-
|
1570 |
-
if st < len(input_tokens):
|
1571 |
-
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
1572 |
-
text_len = len(input_tokens) - st
|
1573 |
-
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
1574 |
-
|
1575 |
-
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
1576 |
-
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
1577 |
-
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
1578 |
-
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
1579 |
-
return position_ids, mrope_position_deltas
|
1580 |
-
else:
|
1581 |
-
if attention_mask is not None:
|
1582 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1583 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1584 |
-
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
1585 |
-
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
1586 |
-
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
1587 |
-
else:
|
1588 |
-
position_ids = (
|
1589 |
-
torch.arange(input_ids.shape[1], device=input_ids.device)
|
1590 |
-
.view(1, 1, -1)
|
1591 |
-
.expand(3, input_ids.shape[0], -1)
|
1592 |
-
)
|
1593 |
-
mrope_position_deltas = torch.zeros(
|
1594 |
-
[input_ids.shape[0], 1],
|
1595 |
-
device=input_ids.device,
|
1596 |
-
dtype=input_ids.dtype,
|
1597 |
-
)
|
1598 |
-
|
1599 |
-
return position_ids, mrope_position_deltas
|
1600 |
-
|
1601 |
-
@add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING)
|
1602 |
-
@replace_return_docstrings(output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1603 |
-
def forward(
|
1604 |
-
self,
|
1605 |
-
input_ids: torch.LongTensor = None,
|
1606 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1607 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1608 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1609 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1610 |
-
labels: Optional[torch.LongTensor] = None,
|
1611 |
-
use_cache: Optional[bool] = None,
|
1612 |
-
output_attentions: Optional[bool] = None,
|
1613 |
-
output_hidden_states: Optional[bool] = None,
|
1614 |
-
return_dict: Optional[bool] = None,
|
1615 |
-
pixel_values: Optional[torch.Tensor] = None,
|
1616 |
-
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
1617 |
-
image_grid_thw: Optional[torch.LongTensor] = None,
|
1618 |
-
video_grid_thw: Optional[torch.LongTensor] = None,
|
1619 |
-
rope_deltas: Optional[torch.LongTensor] = None,
|
1620 |
-
cache_position: Optional[torch.LongTensor] = None,
|
1621 |
-
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
1622 |
-
r"""
|
1623 |
-
Args:
|
1624 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1625 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1626 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1627 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1628 |
-
|
1629 |
-
Returns:
|
1630 |
-
|
1631 |
-
Example:
|
1632 |
-
|
1633 |
-
```python
|
1634 |
-
>>> from PIL import Image
|
1635 |
-
>>> import requests
|
1636 |
-
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
1637 |
-
|
1638 |
-
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
1639 |
-
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
1640 |
-
|
1641 |
-
>>> messages = [
|
1642 |
-
{
|
1643 |
-
"role": "user",
|
1644 |
-
"content": [
|
1645 |
-
{"type": "image"},
|
1646 |
-
{"type": "text", "text": "What is shown in this image?"},
|
1647 |
-
],
|
1648 |
-
},
|
1649 |
-
]
|
1650 |
-
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1651 |
-
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1652 |
-
|
1653 |
-
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
1654 |
-
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
1655 |
-
|
1656 |
-
>>> # Generate
|
1657 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1658 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1659 |
-
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
1660 |
-
```"""
|
1661 |
-
|
1662 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1663 |
-
output_hidden_states = (
|
1664 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1665 |
-
)
|
1666 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1667 |
-
|
1668 |
-
if inputs_embeds is None:
|
1669 |
-
inputs_embeds = self.model.embed_tokens(input_ids)
|
1670 |
-
if pixel_values is not None:
|
1671 |
-
pixel_values = pixel_values.type(self.visual.get_dtype())
|
1672 |
-
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
1673 |
-
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
1674 |
-
n_image_features = image_embeds.shape[0]
|
1675 |
-
if n_image_tokens != n_image_features:
|
1676 |
-
raise ValueError(
|
1677 |
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
1678 |
-
)
|
1679 |
-
image_mask = (
|
1680 |
-
(input_ids == self.config.image_token_id)
|
1681 |
-
.unsqueeze(-1)
|
1682 |
-
.expand_as(inputs_embeds)
|
1683 |
-
.to(inputs_embeds.device)
|
1684 |
-
)
|
1685 |
-
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
1686 |
-
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
1687 |
-
|
1688 |
-
if pixel_values_videos is not None:
|
1689 |
-
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
1690 |
-
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
1691 |
-
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
1692 |
-
n_video_features = video_embeds.shape[0]
|
1693 |
-
if n_video_tokens != n_video_features:
|
1694 |
-
raise ValueError(
|
1695 |
-
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
1696 |
-
)
|
1697 |
-
video_mask = (
|
1698 |
-
(input_ids == self.config.video_token_id)
|
1699 |
-
.unsqueeze(-1)
|
1700 |
-
.expand_as(inputs_embeds)
|
1701 |
-
.to(inputs_embeds.device)
|
1702 |
-
)
|
1703 |
-
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
1704 |
-
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
1705 |
-
|
1706 |
-
if attention_mask is not None:
|
1707 |
-
attention_mask = attention_mask.to(inputs_embeds.device)
|
1708 |
-
|
1709 |
-
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
|
1710 |
-
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
|
1711 |
-
# calculate RoPE index once per generation in the pre-fill stage only
|
1712 |
-
if (
|
1713 |
-
(cache_position is not None and cache_position[0] == 0)
|
1714 |
-
or self.rope_deltas is None
|
1715 |
-
or (past_key_values is None or past_key_values.get_seq_length() == 0)
|
1716 |
-
):
|
1717 |
-
position_ids, rope_deltas = self.get_rope_index(
|
1718 |
-
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
1719 |
-
)
|
1720 |
-
self.rope_deltas = rope_deltas
|
1721 |
-
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
1722 |
-
else:
|
1723 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
1724 |
-
delta = cache_position[0] + self.rope_deltas if cache_position is not None else 0
|
1725 |
-
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
1726 |
-
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
1727 |
-
if cache_position is not None: # otherwise `deltas` is an int `0`
|
1728 |
-
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
1729 |
-
delta = delta.to(position_ids.device)
|
1730 |
-
position_ids = position_ids.add(delta)
|
1731 |
-
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
1732 |
-
|
1733 |
-
outputs = self.model(
|
1734 |
-
input_ids=None,
|
1735 |
-
position_ids=position_ids,
|
1736 |
-
attention_mask=attention_mask,
|
1737 |
-
past_key_values=past_key_values,
|
1738 |
-
inputs_embeds=inputs_embeds,
|
1739 |
-
use_cache=use_cache,
|
1740 |
-
output_attentions=output_attentions,
|
1741 |
-
output_hidden_states=output_hidden_states,
|
1742 |
-
return_dict=return_dict,
|
1743 |
-
cache_position=cache_position,
|
1744 |
-
)
|
1745 |
-
|
1746 |
-
hidden_states = outputs[0]
|
1747 |
-
logits = self.lm_head(hidden_states)
|
1748 |
-
|
1749 |
-
loss = None
|
1750 |
-
if labels is not None:
|
1751 |
-
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
1752 |
-
logits = logits.float()
|
1753 |
-
# Shift so that tokens < n predict n
|
1754 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
1755 |
-
shift_labels = labels[..., 1:].contiguous()
|
1756 |
-
# Flatten the tokens
|
1757 |
-
loss_fct = CrossEntropyLoss()
|
1758 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1759 |
-
shift_labels = shift_labels.view(-1)
|
1760 |
-
# Enable model parallelism
|
1761 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
1762 |
-
loss = loss_fct(shift_logits, shift_labels)
|
1763 |
-
|
1764 |
-
if not return_dict:
|
1765 |
-
output = (logits,) + outputs[1:]
|
1766 |
-
return (loss,) + output if loss is not None else output
|
1767 |
-
|
1768 |
-
return Qwen2VLCausalLMOutputWithPast(
|
1769 |
-
loss=loss,
|
1770 |
-
logits=logits,
|
1771 |
-
past_key_values=outputs.past_key_values,
|
1772 |
-
hidden_states=outputs.hidden_states,
|
1773 |
-
attentions=outputs.attentions,
|
1774 |
-
rope_deltas=self.rope_deltas,
|
1775 |
-
)
|
1776 |
-
|
1777 |
-
def prepare_inputs_for_generation(
|
1778 |
-
self,
|
1779 |
-
input_ids,
|
1780 |
-
past_key_values=None,
|
1781 |
-
attention_mask=None,
|
1782 |
-
inputs_embeds=None,
|
1783 |
-
cache_position=None,
|
1784 |
-
position_ids=None,
|
1785 |
-
use_cache=True,
|
1786 |
-
pixel_values=None,
|
1787 |
-
pixel_values_videos=None,
|
1788 |
-
image_grid_thw=None,
|
1789 |
-
video_grid_thw=None,
|
1790 |
-
**kwargs,
|
1791 |
-
):
|
1792 |
-
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
1793 |
-
|
1794 |
-
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1795 |
-
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1796 |
-
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1797 |
-
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
|
1798 |
-
# (we can't check exception 3 while compiling)
|
1799 |
-
# Exception 4: If input_embeds are passed then slice it through `cache_position`, to keep only the unprocessed tokens and
|
1800 |
-
# generate the first token for each sequence. Later use the generated Input ids for continuation.
|
1801 |
-
if past_key_values is not None:
|
1802 |
-
if inputs_embeds is not None and input_ids.shape[1] == 0: # Exception 4
|
1803 |
-
inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
|
1804 |
-
elif (
|
1805 |
-
inputs_embeds is not None # Exception 1
|
1806 |
-
or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3
|
1807 |
-
):
|
1808 |
-
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1809 |
-
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1810 |
-
input_ids = input_ids[:, cache_position]
|
1811 |
-
|
1812 |
-
if cache_position[0] != 0:
|
1813 |
-
pixel_values = None
|
1814 |
-
pixel_values_videos = None
|
1815 |
-
|
1816 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1817 |
-
if inputs_embeds is not None and len(cache_position) == inputs_embeds.shape[1]:
|
1818 |
-
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1819 |
-
else:
|
1820 |
-
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
|
1821 |
-
|
1822 |
-
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1823 |
-
if model_inputs["inputs_embeds"] is not None:
|
1824 |
-
batch_size, sequence_length, _ = inputs_embeds.shape
|
1825 |
-
device = inputs_embeds.device
|
1826 |
-
else:
|
1827 |
-
batch_size, sequence_length = input_ids.shape
|
1828 |
-
device = input_ids.device
|
1829 |
-
|
1830 |
-
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
1831 |
-
attention_mask,
|
1832 |
-
sequence_length=sequence_length,
|
1833 |
-
target_length=past_key_values.get_max_cache_shape(),
|
1834 |
-
dtype=self.lm_head.weight.dtype,
|
1835 |
-
device=device,
|
1836 |
-
cache_position=cache_position,
|
1837 |
-
batch_size=batch_size,
|
1838 |
-
config=self.config,
|
1839 |
-
past_key_values=past_key_values,
|
1840 |
-
)
|
1841 |
-
|
1842 |
-
model_inputs.update(
|
1843 |
-
{
|
1844 |
-
"position_ids": position_ids,
|
1845 |
-
"past_key_values": past_key_values,
|
1846 |
-
"use_cache": use_cache,
|
1847 |
-
"attention_mask": attention_mask,
|
1848 |
-
"pixel_values": pixel_values,
|
1849 |
-
"pixel_values_videos": pixel_values_videos,
|
1850 |
-
"image_grid_thw": image_grid_thw,
|
1851 |
-
"video_grid_thw": video_grid_thw,
|
1852 |
-
"cache_position": cache_position,
|
1853 |
-
}
|
1854 |
-
)
|
1855 |
-
return model_inputs
|
1856 |
-
|
1857 |
-
def _get_image_nums_and_video_nums(
|
1858 |
-
self,
|
1859 |
-
input_ids: Optional[torch.LongTensor],
|
1860 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1861 |
-
"""
|
1862 |
-
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
|
1863 |
-
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
|
1864 |
-
|
1865 |
-
Args:
|
1866 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1867 |
-
Indices of input sequence tokens in the vocabulary.
|
1868 |
-
|
1869 |
-
Returns:
|
1870 |
-
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
|
1871 |
-
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
|
1872 |
-
"""
|
1873 |
-
image_token_id = self.config.image_token_id
|
1874 |
-
video_token_id = self.config.video_token_id
|
1875 |
-
vision_start_token_id = self.config.vision_start_token_id
|
1876 |
-
|
1877 |
-
vision_start_mask = input_ids == vision_start_token_id
|
1878 |
-
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
|
1879 |
-
image_mask = input_ids == image_token_id
|
1880 |
-
video_mask = input_ids == video_token_id
|
1881 |
-
image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
|
1882 |
-
video_nums = torch.sum(vision_first_mask & video_mask, dim=1)
|
1883 |
-
|
1884 |
-
return image_nums, video_nums
|
1885 |
-
|
1886 |
-
def _expand_inputs_for_generation(
|
1887 |
-
self,
|
1888 |
-
expand_size: int = 1,
|
1889 |
-
is_encoder_decoder: bool = False,
|
1890 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1891 |
-
**model_kwargs,
|
1892 |
-
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
1893 |
-
# Overwritten -- Support for expanding tensors without a batch size dimension
|
1894 |
-
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
|
1895 |
-
# pixel_values.shape[0] is sum(seqlen_images for samples)
|
1896 |
-
# image_grid_thw.shape[0] is sum(num_images for samples)
|
1897 |
-
|
1898 |
-
if expand_size == 1:
|
1899 |
-
return input_ids, model_kwargs
|
1900 |
-
|
1901 |
-
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
|
1902 |
-
|
1903 |
-
def _expand_dict_for_generation_visual(dict_to_expand):
|
1904 |
-
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
1905 |
-
video_grid_thw = model_kwargs.get("video_grid_thw", None)
|
1906 |
-
image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids)
|
1907 |
-
|
1908 |
-
def _repeat_interleave_samples(x, lengths, repeat_times):
|
1909 |
-
samples = torch.split(x, lengths)
|
1910 |
-
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
|
1911 |
-
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
|
1912 |
-
return result
|
1913 |
-
|
1914 |
-
for key in dict_to_expand:
|
1915 |
-
if key == "pixel_values":
|
1916 |
-
# split images into samples
|
1917 |
-
samples = torch.split(image_grid_thw, list(image_nums))
|
1918 |
-
# compute the sequence length of images for each sample
|
1919 |
-
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
1920 |
-
dict_to_expand[key] = _repeat_interleave_samples(
|
1921 |
-
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
1922 |
-
)
|
1923 |
-
elif key == "image_grid_thw":
|
1924 |
-
# get the num of images for each sample
|
1925 |
-
lengths = list(image_nums)
|
1926 |
-
dict_to_expand[key] = _repeat_interleave_samples(
|
1927 |
-
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
1928 |
-
)
|
1929 |
-
elif key == "pixel_values_videos":
|
1930 |
-
samples = torch.split(video_grid_thw, list(video_nums))
|
1931 |
-
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
1932 |
-
dict_to_expand[key] = _repeat_interleave_samples(
|
1933 |
-
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
1934 |
-
)
|
1935 |
-
elif key == "video_grid_thw":
|
1936 |
-
lengths = list(video_nums)
|
1937 |
-
dict_to_expand[key] = _repeat_interleave_samples(
|
1938 |
-
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
1939 |
-
)
|
1940 |
-
elif key == "second_per_grid_ts":
|
1941 |
-
if not isinstance(dict_to_expand[key], list):
|
1942 |
-
raise TypeError(
|
1943 |
-
f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead."
|
1944 |
-
)
|
1945 |
-
tensor = torch.tensor(dict_to_expand[key])
|
1946 |
-
lengths = list(video_nums)
|
1947 |
-
tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size)
|
1948 |
-
dict_to_expand[key] = tensor.tolist()
|
1949 |
-
return dict_to_expand
|
1950 |
-
|
1951 |
-
def _expand_dict_for_generation(dict_to_expand):
|
1952 |
-
for key in dict_to_expand:
|
1953 |
-
if (
|
1954 |
-
key != "cache_position"
|
1955 |
-
and dict_to_expand[key] is not None
|
1956 |
-
and isinstance(dict_to_expand[key], torch.Tensor)
|
1957 |
-
and key not in visual_keys
|
1958 |
-
):
|
1959 |
-
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
1960 |
-
return dict_to_expand
|
1961 |
-
|
1962 |
-
# input_ids is required for expanding visual inputs
|
1963 |
-
# If input_ids is unavailable, visual inputs will not be used; therefore, there is no need to expand visual inputs.
|
1964 |
-
if input_ids is not None and input_ids.numel() != 0:
|
1965 |
-
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
|
1966 |
-
|
1967 |
-
if input_ids is not None:
|
1968 |
-
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
1969 |
-
|
1970 |
-
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
1971 |
-
|
1972 |
-
if is_encoder_decoder:
|
1973 |
-
if model_kwargs.get("encoder_outputs") is None:
|
1974 |
-
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
1975 |
-
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
1976 |
-
|
1977 |
-
return input_ids, model_kwargs
|
1978 |
-
|
1979 |
-
|
1980 |
-
__all__ = ["Qwen2VLForConditionalGeneration", "Qwen2VLModel", "Qwen2VLPreTrainedModel"]
|
|
|
27 |
import torch.nn as nn
|
28 |
import torch.nn.functional as F
|
29 |
import torch.utils.checkpoint
|
30 |
+
from torch.nn import LayerNorm
|
31 |
|
32 |
from transformers.activations import ACT2FN
|
33 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
34 |
from transformers.generation import GenerationMixin
|
35 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
36 |
+
from transformers.modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
|
37 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
38 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
39 |
from transformers.modeling_utils import PreTrainedModel
|
40 |
+
from transformers.utils import auto_docstring, can_return_tuple, is_torch_flex_attn_available, is_torchdynamo_compiling, logging
|
41 |
+
from .configuration_qwen2_vl import Qwen2VLVisionConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
+
if is_flash_attn_available():
|
45 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward, flash_attn_varlen_func
|
46 |
|
47 |
+
if is_torch_flex_attn_available():
|
48 |
+
from torch.nn.attention.flex_attention import BlockMask
|
|
|
49 |
|
50 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
|
55 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
56 |
def rotate_half(x):
|
|
|
60 |
return torch.cat((-x2, x1), dim=-1)
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def apply_rotary_pos_emb_vision(
|
64 |
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
65 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
66 |
orig_q_dtype = q.dtype
|
67 |
orig_k_dtype = k.dtype
|
68 |
q, k = q.float(), k.float()
|
69 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
70 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
71 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
72 |
q_embed = q_embed.to(orig_q_dtype)
|
|
|
164 |
"removed and `position_embeddings` will be mandatory."
|
165 |
)
|
166 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
167 |
+
cos = emb.cos()
|
168 |
+
sin = emb.sin()
|
169 |
else:
|
170 |
cos, sin = position_embeddings
|
171 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
|
|
213 |
"removed and `position_embeddings` will be mandatory."
|
214 |
)
|
215 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
216 |
+
cos = emb.cos()
|
217 |
+
sin = emb.sin()
|
218 |
else:
|
219 |
cos, sin = position_embeddings
|
220 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
|
|
251 |
"removed and `position_embeddings` will be mandatory."
|
252 |
)
|
253 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
254 |
+
cos = emb.cos()
|
255 |
+
sin = emb.sin()
|
256 |
else:
|
257 |
cos, sin = position_embeddings
|
258 |
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
|
|
263 |
q = q.transpose(0, 1)
|
264 |
k = k.transpose(0, 1)
|
265 |
v = v.transpose(0, 1)
|
266 |
+
attn_output = F.scaled_dot_product_attention(
|
267 |
+
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0
|
268 |
+
)
|
269 |
+
attn_output = attn_output.squeeze(0).transpose(0, 1)
|
270 |
attn_output = attn_output.reshape(seq_length, -1)
|
271 |
attn_output = self.proj(attn_output)
|
272 |
return attn_output
|
|
|
308 |
return hidden_states
|
309 |
|
310 |
|
311 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
|
|
313 |
base_model_prefix = "model"
|
314 |
supports_gradient_checkpointing = True
|
|
|
315 |
_skip_keys_device_placement = "past_key_values"
|
316 |
_supports_flash_attn_2 = True
|
317 |
_supports_sdpa = True
|
|
|
319 |
_supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions`
|
320 |
|
321 |
def _init_weights(self, module):
|
322 |
+
std = self.config.get_text_config().initializer_range
|
323 |
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
324 |
module.weight.data.normal_(mean=0.0, std=std)
|
325 |
if module.bias is not None:
|
|
|
328 |
module.weight.data.normal_(mean=0.0, std=std)
|
329 |
if module.padding_idx is not None:
|
330 |
module.weight.data[module.padding_idx].zero_()
|
331 |
+
elif isinstance(module, nn.LayerNorm):
|
332 |
+
module.weight.data.fill_(1.0)
|
333 |
+
module.bias.data.zero_()
|
334 |
|
335 |
|
336 |
+
@auto_docstring
|
337 |
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
338 |
config_class = Qwen2VLVisionConfig
|
339 |
_no_split_modules = ["Qwen2VLVisionBlock"]
|
|
|
395 |
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
396 |
return rotary_pos_emb
|
397 |
|
398 |
+
@auto_docstring
|
399 |
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
400 |
+
r"""
|
401 |
+
grid_thw (`torch.LongTensor` of shape `(num_images, 3)`):
|
402 |
+
The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
|
403 |
+
"""
|
404 |
hidden_states = self.patch_embed(hidden_states)
|
405 |
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
406 |
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
|
|
425 |
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
|
426 |
|
427 |
return self.merger(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocessor_config.json
CHANGED
@@ -11,6 +11,7 @@
|
|
11 |
0.4578275,
|
12 |
0.40821073
|
13 |
],
|
|
|
14 |
"image_std": [
|
15 |
0.26862954,
|
16 |
0.26130258,
|
@@ -20,6 +21,7 @@
|
|
20 |
"merge_size": 2,
|
21 |
"min_pixels": 3136,
|
22 |
"patch_size": 14,
|
|
|
23 |
"resample": 3,
|
24 |
"rescale_factor": 0.00392156862745098,
|
25 |
"size": {
|
|
|
11 |
0.4578275,
|
12 |
0.40821073
|
13 |
],
|
14 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
15 |
"image_std": [
|
16 |
0.26862954,
|
17 |
0.26130258,
|
|
|
21 |
"merge_size": 2,
|
22 |
"min_pixels": 3136,
|
23 |
"patch_size": 14,
|
24 |
+
"processor_class": "Qwen2VLProcessor",
|
25 |
"resample": 3,
|
26 |
"rescale_factor": 0.00392156862745098,
|
27 |
"size": {
|