ace14459tv commited on
Commit
9369186
·
1 Parent(s): cb43ec0

mT5ベースのエラー診断モデル

Browse files
FineTune.sh.o40076479 ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
0
 
 
1
 
 
 
 
2
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
 
5
 
 
1
+ GPU available: True (cuda), used: True
2
+ TPU available: False, using: 0 TPU cores
3
+ IPU available: False, using: 0 IPUs
4
+ HPU available: False, using: 0 HPUs
5
+ Downloading and preparing dataset json/default to /home/ace14459tv/t5maru/cache/json/default-76e405bf2a5f1b35/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...
6
+
7
+
8
+
9
 
10
+
11
 
12
+
13
+
14
+
15
 
16
+
17
 
18
+
19
+ | Name | Type | Params
20
+ ------------------------------------------
21
+ 0 | model | OptimizedModule | 300 M
22
+ ------------------------------------------
23
+ 300 M Trainable params
24
+ 0 Non-trainable params
25
+ 300 M Total params
26
+ 1,200.707 Total estimated model params size (MB)
27
+ [2023-06-30 20:54:37,264] torch._inductor.utils: [WARNING] using triton random, expect difference from eager
28
+ Metric val_loss improved. New best score: 1.139
29
+ Metric val_loss improved by 0.743 >= min_delta = 0.0. New best score: 0.397
30
+ Metric val_loss improved by 0.178 >= min_delta = 0.0. New best score: 0.219
31
+ Metric val_loss improved by 0.058 >= min_delta = 0.0. New best score: 0.161
32
+ Metric val_loss improved by 0.027 >= min_delta = 0.0. New best score: 0.134
33
+ Metric val_loss improved by 0.020 >= min_delta = 0.0. New best score: 0.115
34
+ Metric val_loss improved by 0.012 >= min_delta = 0.0. New best score: 0.103
35
+ Metric val_loss improved by 0.005 >= min_delta = 0.0. New best score: 0.098
36
+ Metric val_loss improved by 0.011 >= min_delta = 0.0. New best score: 0.087
37
+ Metric val_loss improved by 0.000 >= min_delta = 0.0. New best score: 0.086
38
+ Metric val_loss improved by 0.004 >= min_delta = 0.0. New best score: 0.083
39
+ Metric val_loss improved by 0.006 >= min_delta = 0.0. New best score: 0.077
40
+ Metric val_loss improved by 0.002 >= min_delta = 0.0. New best score: 0.075
41
+ Monitored metric val_loss did not improve in the last 3 records. Best score: 0.075. Signaling Trainer to stop.
42
+ {"log": "trained", "date": "2023-06-30T20:53:45", "elapsed": "00:05:22", "model": "google/mt5-small", "max_length": 128, "target_max_length": 128, "batch_size": 32, "gradient_accumulation_steps": 1, "train_steps": 2700, "accelerator": "gpu", "devices": "auto", "precision": 32, "strategy": "auto", "gradient_clip_val": 1.0, "compile": true, "solver": "adamw", "lr": 0.0003, "warmup_steps": 1, "training_steps": 100000, "adam_epsilon": 1e-08, "weight_decay": 0.0, "epoch": 17, "step": 1530, "saved": "0630_mT5"}
43
+ 😊 testing /home/ace14459tv/t5maru/error_data/0630/error_3_0630_test.jsonl on cuda
44
+ Downloading and preparing dataset generator/default to /home/ace14459tv/t5maru/cache/generator/default-f9a3d4be341e4e78/0.0.0...
45
+
46
 
47
+
48
 
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/mt5-small",
3
+ "architectures": [
4
+ "MT5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 1024,
7
+ "d_kv": 64,
8
+ "d_model": 512,
9
+ "decoder_start_token_id": 0,
10
+ "dense_act_fn": "gelu_new",
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 1,
13
+ "feed_forward_proj": "gated-gelu",
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "is_gated_act": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "mt5",
19
+ "num_decoder_layers": 8,
20
+ "num_heads": 6,
21
+ "num_layers": 8,
22
+ "pad_token_id": 0,
23
+ "relative_attention_max_distance": 128,
24
+ "relative_attention_num_buckets": 32,
25
+ "tie_word_embeddings": false,
26
+ "tokenizer_class": "T5Tokenizer",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.28.1",
29
+ "use_cache": true,
30
+ "vocab_size": 250112
31
+ }
error_3_0630_tested.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "decoder_start_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.1"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1338d5d8fe013b9e3c29d74a6d7136c20c259d2fc802699f187ac6d02e48b82
3
+ size 1200769797
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "eos_token": "</s>",
3
+ "pad_token": "<pad>",
4
+ "unk_token": "<unk>"
5
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
t5marulog.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"log": "trained", "date": "2023-06-30T20:53:45", "elapsed": "00:05:22", "model": "google/mt5-small", "max_length": 128, "target_max_length": 128, "batch_size": 32, "gradient_accumulation_steps": 1, "train_steps": 2700, "accelerator": "gpu", "devices": "auto", "precision": 32, "strategy": "auto", "gradient_clip_val": 1.0, "compile": true, "solver": "adamw", "lr": 0.0003, "warmup_steps": 1, "training_steps": 100000, "adam_epsilon": 1e-08, "weight_decay": 0.0, "epoch": 17, "step": 1530, "saved": "0630_mT5"}
tokenizer_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "clean_up_tokenization_spaces": true,
4
+ "eos_token": "</s>",
5
+ "extra_ids": 0,
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "pad_token": "<pad>",
8
+ "sp_model_kwargs": {},
9
+ "tokenizer_class": "T5Tokenizer",
10
+ "unk_token": "<unk>"
11
+ }