File size: 6,928 Bytes
35d1e5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
library_name: transformers
license: gemma
base_model: google/gemma-3-27b-it
tags:
- generated_from_trainer
datasets:
- shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt
- shisa-ai/shisa-v2-roleplaying-sft
- shisa-ai/translation_set_april_6
- shisa-ai/rewild-set-deepseek-subset
- shisa-ai/magpie-ultra-set
- shisa-ai/magpie-advanced-questions-set
- shisa-ai/japan-magpie-set
- shisa-ai/shisa-v2-instruction-following-sft
model-index:
- name: outputs/ablation-196-finalsft2-shisa-v2-gemma3-27b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered
base_model: google/gemma-3-27b-it
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: shisa-ai/shisa-v2-roleplaying-sft
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/translation_set_april_6
split: train[:25%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/rewild-set-deepseek-subset
split: train[:25%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/magpie-ultra-set
split: train[:8%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/magpie-advanced-questions-set
split: train[:8%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/japan-magpie-set
split: train
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/shisa-v2-instruction-following-sft
split: train[:50%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-196-finalsft2-shisa-v2-gemma3-27b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-196-finalsft2-shisa-v2-gemma3-27b
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 5.4e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# outputs/ablation-196-finalsft2-shisa-v2-gemma3-27b
This model is a fine-tuned version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) on the shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt, the shisa-ai/shisa-v2-roleplaying-sft, the shisa-ai/translation_set_april_6, the shisa-ai/rewild-set-deepseek-subset, the shisa-ai/magpie-ultra-set, the shisa-ai/magpie-advanced-questions-set, the shisa-ai/japan-magpie-set and the shisa-ai/shisa-v2-instruction-following-sft datasets.
It achieves the following results on the evaluation set:
- Loss: 0.5417
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.4e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 11.3287 | 0.0027 | 1 | 5.4644 |
| 1.1409 | 0.4993 | 182 | 0.5644 |
| 1.0588 | 0.9986 | 364 | 0.5344 |
| 0.9207 | 1.4966 | 546 | 0.5322 |
| 0.8979 | 1.9959 | 728 | 0.5245 |
| 0.7673 | 2.4938 | 910 | 0.5432 |
| 0.7521 | 2.9931 | 1092 | 0.5417 |
### Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
|