---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/lr-8e6
  results: []
datasets:
- augmxnt/ultra-orca-boros-en-ja-v1
---
*Per the Llama 3 Community License Agreement, the official name of this model is "LLama 3 shisa-v1-llama3-8b"*

8e6 moved in as it is a slightly superior model, will do some cleanup and renaming soon...



I ran the tests for 2 runs just to try to lower variance. These are all using temp 0.2, min_p 0.1, freq penalty 0.5

| Model                       | AVG Score | ELYZA100 | JA MT-Bench | Rakuda | Tengu-Bench | JA Char % |
|-----------------------------|-----------|----------|-------------|--------|-------------|-----------|
| shisa-v1-llama3-8b.lr-2e4   | 3.97      | 4.60     | 4.54        | 3.33   | 3.42        | 92.42%    |
| shisa-v1-llama3-8b.lr-5e5   | 5.73      | 6.28     | 6.45        | 5.37   | 4.81        | 90.93%    |
| shisa-v1-llama3-8b.2e5      | 6.33      | 6.51     | 6.66        | 6.68   | 5.48        | 91.51%    |
| shisa-v1-llama3-8b (8-e6)   | 6.59      | 6.67     | 6.95        | 7.05   | 5.68        | 91.30%    |
| shisa-v1-llama3-8b.5e6      | 6.42      | 6.33     | 6.76        | 7.15   | 5.45        | 91.56%    |
| shisa-v1-llama3-8b.2e6      | 6.31      | 6.26     | 6.88        | 6.73   | 5.38        | 92.00%    |
* The 2e-4 and 5e-5 are definitely overtrained and perform significantly worse.
* 2e-5 is on the edge since weightwacher shows the embed as slightly overtrained for 2e-5, but NEFTune version is not
* 8e-6 performs the best, and 5e-6 also performed slightly better than 2e-5

For a comparison of where it sits vs other models:

| Model                                  | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09                 | 8.75    | 8.78            | 8.74     | 9.18   | 8.31        |
| gpt-4o-2024-05-13                      | 8.72    | 8.88            | 8.69     | 9.15   | 8.16        |
| gemini-1.5-pro                         | 8.58    | 8.58            | 8.93     | 9.20   | 7.61        |
| claude-3-opus-20240229                 | 8.55    | 8.64            | 8.58     | 8.75   | 8.23        |
| CohereForAI/c4ai-command-r-plus        | 7.69    | 7.50            | 7.43     | 9.05   | 6.79        |
| **shisa-ai/shisa-v1-llama3-70b**       | **7.30**| **7.34**        | **7.67** | **8.15** | **6.04**  |
| gpt-3.5-turbo-0125                     | 7.17    | 7.24            | 6.98     | 7.64   | 6.82        |
| **shisa-ai/shisa-v1-llama3-70b.2e5**   | **7.17**| **7.16**        | **7.45** | **7.98** | **6.09**  |
| karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00    | 7.18            | 6.30     | 7.98   | 6.55        |
| karakuri-ai/karakuri-lm-70b-chat-v0.1  | 6.84    | 6.86            | 6.43     | 7.85   | 6.23        |
| lightblue/ao-karasu-72B                | 6.81    | 7.19            | 6.54     | 7.25   | 6.27        |
| **shisa-ai/shisa-v1-llama3-8b**        | **6.59**| **6.67**        | **6.95** | **7.05**| **5.68**   |
| **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48**        | **6.07** | **7.11**| **5.03**   |
| lightblue/suzume-llama-3-8B-japanese   | 5.96    | 6.68            | 4.96     | 6.68   | 5.53        |
| augmxnt/shisa-gamma-7b-v1              | 5.82    | 5.96            | 5.02     | 6.85   | 5.47        |
| **shisa-ai/shisa-v1-phi3-14b**         | **5.77**| **6.28**        | **5.26** | **6.55**| **5.01**   |
| **shisa-ai/shisa-v1-gemma-8b**         | **5.64**| **6.50**        | **5.42** | **5.10**| **5.55**   |
| Rakuten/RakutenAI-7B-chat              | 5.58    | 5.92            | 4.60     | 6.58   | 5.24        |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20  | 5.58            | 4.74     | 5.46   | 5.01        |
| **shisa-ai/shisa-v1-mistral0.3-7b**    | **5.11**| **5.64**        | **6.10** | **3.83**|**4.86**    |
| cyberagent/calm2-7b-chat               | 4.76    | 4.90            | 3.58     | 5.75   | 4.81        |
| mistralai/Mistral-7B-Instruct-v0.2     | 4.69    | 5.78            | 4.65     | 3.80   | 4.53        |
| **shisa-ai/shisa-v1-yi1.5-9b**         | **4.63**| **5.98**        | **4.28** | **3.26**|**5.00**    |
| augmxnt/shisa-7b-v1                    | 4.50    | 4.63            | 3.95     | 4.89   | 4.53        |

Compute for training this model was generously provided by <a href="https://ubitus.net/">Ubitus</a>.


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: llama3
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lr-8e6

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-llama3-8b.lr-8e6

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# outputs/lr-8e6

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3951        | 0.0064 | 1    | 0.8645          |
| 0.8731        | 0.5020 | 79   | 0.5577          |
| 0.8405        | 1.0040 | 158  | 0.5138          |
| 0.6888        | 1.4853 | 237  | 0.4982          |
| 0.6674        | 1.9873 | 316  | 0.4870          |
| 0.5859        | 2.4694 | 395  | 0.4983          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1