Training in progress, step 160, checkpoint
Browse files- .gitattributes +1 -0
- checkpoint-160/README.md +202 -0
- checkpoint-160/adapter_config.json +39 -0
- checkpoint-160/adapter_model.safetensors +3 -0
- checkpoint-160/added_tokens.json +28 -0
- checkpoint-160/global_step160/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-160/global_step160/mp_rank_00_model_states.pt +3 -0
- checkpoint-160/latest +1 -0
- checkpoint-160/merges.txt +0 -0
- checkpoint-160/rng_state.pth +3 -0
- checkpoint-160/scheduler.pt +3 -0
- checkpoint-160/special_tokens_map.json +31 -0
- checkpoint-160/tokenizer.json +3 -0
- checkpoint-160/tokenizer_config.json +240 -0
- checkpoint-160/trainer_state.json +1170 -0
- checkpoint-160/training_args.bin +3 -0
- checkpoint-160/vocab.json +0 -0
- checkpoint-160/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-160/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen3-32B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-160/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen3-32B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": null,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 64,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.05,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 64,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"v_proj",
|
28 |
+
"up_proj",
|
29 |
+
"down_proj",
|
30 |
+
"q_proj",
|
31 |
+
"o_proj",
|
32 |
+
"k_proj",
|
33 |
+
"gate_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-160/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81a7c8fb6926ed77611679521777c51ce5c35bd629f4fb5ed95f5b7887d3848c
|
3 |
+
size 1073864104
|
checkpoint-160/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
checkpoint-160/global_step160/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79153c2904a32cc4e37ce3f8baaa94938b512fc2128c9ffb41d72b1b15c1d8f8
|
3 |
+
size 3238110642
|
checkpoint-160/global_step160/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b2c68edabb78448950db70bf14d57f1fdccbac1435bc2475116b99eee612d2
|
3 |
+
size 1571050088
|
checkpoint-160/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step160
|
checkpoint-160/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-160/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef6ff4fb3a183b6196ff5e2862d7df37aaff715d84048357ff9e907ec4b14171
|
3 |
+
size 14244
|
checkpoint-160/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5d5fcd73784cccb38c41c46349ad61078e83929b7322c693430925ddb0c625
|
3 |
+
size 1064
|
checkpoint-160/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-160/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
checkpoint-160/tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
checkpoint-160/trainer_state.json
ADDED
@@ -0,0 +1,1170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.1005656819610308,
|
6 |
+
"eval_steps": 160,
|
7 |
+
"global_step": 160,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0006285355122564425,
|
14 |
+
"grad_norm": 2.96633243560791,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 7.5468,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.0006285355122564425,
|
21 |
+
"eval_loss": 7.076071739196777,
|
22 |
+
"eval_runtime": 1556.6109,
|
23 |
+
"eval_samples_per_second": 1.656,
|
24 |
+
"eval_steps_per_second": 1.656,
|
25 |
+
"step": 1
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.001257071024512885,
|
29 |
+
"grad_norm": 2.7123501300811768,
|
30 |
+
"learning_rate": 4.0000000000000003e-07,
|
31 |
+
"loss": 6.3309,
|
32 |
+
"step": 2
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.0018856065367693275,
|
36 |
+
"grad_norm": 2.4243223667144775,
|
37 |
+
"learning_rate": 8.000000000000001e-07,
|
38 |
+
"loss": 6.7763,
|
39 |
+
"step": 3
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.00251414204902577,
|
43 |
+
"grad_norm": 2.319216728210449,
|
44 |
+
"learning_rate": 1.2000000000000002e-06,
|
45 |
+
"loss": 6.8187,
|
46 |
+
"step": 4
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.0031426775612822125,
|
50 |
+
"grad_norm": 2.4935989379882812,
|
51 |
+
"learning_rate": 1.6000000000000001e-06,
|
52 |
+
"loss": 7.0526,
|
53 |
+
"step": 5
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.003771213073538655,
|
57 |
+
"grad_norm": 2.1718926429748535,
|
58 |
+
"learning_rate": 2.0000000000000003e-06,
|
59 |
+
"loss": 6.7646,
|
60 |
+
"step": 6
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.0043997485857950975,
|
64 |
+
"grad_norm": 2.177217960357666,
|
65 |
+
"learning_rate": 2.4000000000000003e-06,
|
66 |
+
"loss": 6.6131,
|
67 |
+
"step": 7
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.00502828409805154,
|
71 |
+
"grad_norm": 2.9915874004364014,
|
72 |
+
"learning_rate": 2.8000000000000003e-06,
|
73 |
+
"loss": 7.6544,
|
74 |
+
"step": 8
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.0056568196103079825,
|
78 |
+
"grad_norm": 2.6981074810028076,
|
79 |
+
"learning_rate": 3.2000000000000003e-06,
|
80 |
+
"loss": 6.799,
|
81 |
+
"step": 9
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.006285355122564425,
|
85 |
+
"grad_norm": 4.512426376342773,
|
86 |
+
"learning_rate": 3.6e-06,
|
87 |
+
"loss": 8.3895,
|
88 |
+
"step": 10
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.0069138906348208675,
|
92 |
+
"grad_norm": 2.3968913555145264,
|
93 |
+
"learning_rate": 4.000000000000001e-06,
|
94 |
+
"loss": 6.3478,
|
95 |
+
"step": 11
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.00754242614707731,
|
99 |
+
"grad_norm": 1.9744027853012085,
|
100 |
+
"learning_rate": 4.4e-06,
|
101 |
+
"loss": 5.5536,
|
102 |
+
"step": 12
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.008170961659333752,
|
106 |
+
"grad_norm": 3.050507068634033,
|
107 |
+
"learning_rate": 4.800000000000001e-06,
|
108 |
+
"loss": 6.5491,
|
109 |
+
"step": 13
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.008799497171590195,
|
113 |
+
"grad_norm": 3.0034799575805664,
|
114 |
+
"learning_rate": 5.2e-06,
|
115 |
+
"loss": 7.2764,
|
116 |
+
"step": 14
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.009428032683846637,
|
120 |
+
"grad_norm": 2.323613405227661,
|
121 |
+
"learning_rate": 5.600000000000001e-06,
|
122 |
+
"loss": 6.8805,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.01005656819610308,
|
127 |
+
"grad_norm": 3.129593849182129,
|
128 |
+
"learning_rate": 6e-06,
|
129 |
+
"loss": 7.3171,
|
130 |
+
"step": 16
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.010685103708359522,
|
134 |
+
"grad_norm": 2.296137571334839,
|
135 |
+
"learning_rate": 6.4000000000000006e-06,
|
136 |
+
"loss": 6.4251,
|
137 |
+
"step": 17
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.011313639220615965,
|
141 |
+
"grad_norm": 2.637282133102417,
|
142 |
+
"learning_rate": 6.800000000000001e-06,
|
143 |
+
"loss": 6.6142,
|
144 |
+
"step": 18
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.011942174732872407,
|
148 |
+
"grad_norm": 2.1313271522521973,
|
149 |
+
"learning_rate": 7.2e-06,
|
150 |
+
"loss": 6.3841,
|
151 |
+
"step": 19
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.01257071024512885,
|
155 |
+
"grad_norm": 2.7492284774780273,
|
156 |
+
"learning_rate": 7.6e-06,
|
157 |
+
"loss": 6.8148,
|
158 |
+
"step": 20
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.013199245757385292,
|
162 |
+
"grad_norm": 2.945878267288208,
|
163 |
+
"learning_rate": 8.000000000000001e-06,
|
164 |
+
"loss": 6.9732,
|
165 |
+
"step": 21
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.013827781269641735,
|
169 |
+
"grad_norm": 3.709951162338257,
|
170 |
+
"learning_rate": 8.400000000000001e-06,
|
171 |
+
"loss": 7.7273,
|
172 |
+
"step": 22
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.014456316781898177,
|
176 |
+
"grad_norm": 3.023289203643799,
|
177 |
+
"learning_rate": 8.8e-06,
|
178 |
+
"loss": 7.0649,
|
179 |
+
"step": 23
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.01508485229415462,
|
183 |
+
"grad_norm": 3.163715124130249,
|
184 |
+
"learning_rate": 9.2e-06,
|
185 |
+
"loss": 6.9342,
|
186 |
+
"step": 24
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.01571338780641106,
|
190 |
+
"grad_norm": 4.114445686340332,
|
191 |
+
"learning_rate": 9.600000000000001e-06,
|
192 |
+
"loss": 8.119,
|
193 |
+
"step": 25
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.016341923318667503,
|
197 |
+
"grad_norm": 3.021068572998047,
|
198 |
+
"learning_rate": 1e-05,
|
199 |
+
"loss": 7.4067,
|
200 |
+
"step": 26
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.01697045883092395,
|
204 |
+
"grad_norm": 3.724407911300659,
|
205 |
+
"learning_rate": 1.04e-05,
|
206 |
+
"loss": 7.3869,
|
207 |
+
"step": 27
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.01759899434318039,
|
211 |
+
"grad_norm": 2.656257390975952,
|
212 |
+
"learning_rate": 1.08e-05,
|
213 |
+
"loss": 5.9961,
|
214 |
+
"step": 28
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.018227529855436832,
|
218 |
+
"grad_norm": 2.7785143852233887,
|
219 |
+
"learning_rate": 1.1200000000000001e-05,
|
220 |
+
"loss": 5.6596,
|
221 |
+
"step": 29
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.018856065367693273,
|
225 |
+
"grad_norm": 3.130934715270996,
|
226 |
+
"learning_rate": 1.16e-05,
|
227 |
+
"loss": 6.6092,
|
228 |
+
"step": 30
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.01948460087994972,
|
232 |
+
"grad_norm": 3.42301869392395,
|
233 |
+
"learning_rate": 1.2e-05,
|
234 |
+
"loss": 6.3373,
|
235 |
+
"step": 31
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.02011313639220616,
|
239 |
+
"grad_norm": 2.8691611289978027,
|
240 |
+
"learning_rate": 1.24e-05,
|
241 |
+
"loss": 6.5923,
|
242 |
+
"step": 32
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.020741671904462602,
|
246 |
+
"grad_norm": 2.917086601257324,
|
247 |
+
"learning_rate": 1.2800000000000001e-05,
|
248 |
+
"loss": 5.9773,
|
249 |
+
"step": 33
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.021370207416719043,
|
253 |
+
"grad_norm": 4.07196044921875,
|
254 |
+
"learning_rate": 1.32e-05,
|
255 |
+
"loss": 7.4423,
|
256 |
+
"step": 34
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.02199874292897549,
|
260 |
+
"grad_norm": 4.738312244415283,
|
261 |
+
"learning_rate": 1.3600000000000002e-05,
|
262 |
+
"loss": 7.5113,
|
263 |
+
"step": 35
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.02262727844123193,
|
267 |
+
"grad_norm": 3.898664712905884,
|
268 |
+
"learning_rate": 1.4000000000000001e-05,
|
269 |
+
"loss": 6.8738,
|
270 |
+
"step": 36
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.023255813953488372,
|
274 |
+
"grad_norm": 3.7448792457580566,
|
275 |
+
"learning_rate": 1.44e-05,
|
276 |
+
"loss": 6.9615,
|
277 |
+
"step": 37
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.023884349465744813,
|
281 |
+
"grad_norm": 3.5938379764556885,
|
282 |
+
"learning_rate": 1.48e-05,
|
283 |
+
"loss": 6.0651,
|
284 |
+
"step": 38
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.02451288497800126,
|
288 |
+
"grad_norm": 4.253636360168457,
|
289 |
+
"learning_rate": 1.52e-05,
|
290 |
+
"loss": 6.9986,
|
291 |
+
"step": 39
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.0251414204902577,
|
295 |
+
"grad_norm": 4.985451698303223,
|
296 |
+
"learning_rate": 1.56e-05,
|
297 |
+
"loss": 7.252,
|
298 |
+
"step": 40
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.025769956002514142,
|
302 |
+
"grad_norm": 4.376275062561035,
|
303 |
+
"learning_rate": 1.6000000000000003e-05,
|
304 |
+
"loss": 6.8091,
|
305 |
+
"step": 41
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.026398491514770583,
|
309 |
+
"grad_norm": 4.697645664215088,
|
310 |
+
"learning_rate": 1.6400000000000002e-05,
|
311 |
+
"loss": 6.4319,
|
312 |
+
"step": 42
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.02702702702702703,
|
316 |
+
"grad_norm": 5.258227348327637,
|
317 |
+
"learning_rate": 1.6800000000000002e-05,
|
318 |
+
"loss": 6.7672,
|
319 |
+
"step": 43
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.02765556253928347,
|
323 |
+
"grad_norm": 5.063000679016113,
|
324 |
+
"learning_rate": 1.7199999999999998e-05,
|
325 |
+
"loss": 6.3354,
|
326 |
+
"step": 44
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.028284098051539912,
|
330 |
+
"grad_norm": 4.573636531829834,
|
331 |
+
"learning_rate": 1.76e-05,
|
332 |
+
"loss": 6.3374,
|
333 |
+
"step": 45
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.028912633563796353,
|
337 |
+
"grad_norm": 4.72340202331543,
|
338 |
+
"learning_rate": 1.8e-05,
|
339 |
+
"loss": 6.6553,
|
340 |
+
"step": 46
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.0295411690760528,
|
344 |
+
"grad_norm": 6.681248664855957,
|
345 |
+
"learning_rate": 1.84e-05,
|
346 |
+
"loss": 7.7157,
|
347 |
+
"step": 47
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.03016970458830924,
|
351 |
+
"grad_norm": 5.952408313751221,
|
352 |
+
"learning_rate": 1.88e-05,
|
353 |
+
"loss": 5.8215,
|
354 |
+
"step": 48
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.030798240100565682,
|
358 |
+
"grad_norm": 6.599308967590332,
|
359 |
+
"learning_rate": 1.9200000000000003e-05,
|
360 |
+
"loss": 6.921,
|
361 |
+
"step": 49
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.03142677561282212,
|
365 |
+
"grad_norm": 6.538867473602295,
|
366 |
+
"learning_rate": 1.9600000000000002e-05,
|
367 |
+
"loss": 7.1274,
|
368 |
+
"step": 50
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.03205531112507857,
|
372 |
+
"grad_norm": 5.91294527053833,
|
373 |
+
"learning_rate": 2e-05,
|
374 |
+
"loss": 6.7263,
|
375 |
+
"step": 51
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.03268384663733501,
|
379 |
+
"grad_norm": 7.943373203277588,
|
380 |
+
"learning_rate": 2.04e-05,
|
381 |
+
"loss": 7.4335,
|
382 |
+
"step": 52
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.03331238214959145,
|
386 |
+
"grad_norm": 7.023540496826172,
|
387 |
+
"learning_rate": 2.08e-05,
|
388 |
+
"loss": 6.3428,
|
389 |
+
"step": 53
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.0339409176618479,
|
393 |
+
"grad_norm": 7.031850814819336,
|
394 |
+
"learning_rate": 2.12e-05,
|
395 |
+
"loss": 6.2423,
|
396 |
+
"step": 54
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.034569453174104335,
|
400 |
+
"grad_norm": 6.891653537750244,
|
401 |
+
"learning_rate": 2.16e-05,
|
402 |
+
"loss": 6.4081,
|
403 |
+
"step": 55
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.03519798868636078,
|
407 |
+
"grad_norm": 8.165786743164062,
|
408 |
+
"learning_rate": 2.2000000000000003e-05,
|
409 |
+
"loss": 7.1081,
|
410 |
+
"step": 56
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.035826524198617225,
|
414 |
+
"grad_norm": 9.146330833435059,
|
415 |
+
"learning_rate": 2.2400000000000002e-05,
|
416 |
+
"loss": 7.4309,
|
417 |
+
"step": 57
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.036455059710873663,
|
421 |
+
"grad_norm": 8.637526512145996,
|
422 |
+
"learning_rate": 2.2800000000000002e-05,
|
423 |
+
"loss": 6.9889,
|
424 |
+
"step": 58
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.03708359522313011,
|
428 |
+
"grad_norm": 8.397353172302246,
|
429 |
+
"learning_rate": 2.32e-05,
|
430 |
+
"loss": 5.8222,
|
431 |
+
"step": 59
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.03771213073538655,
|
435 |
+
"grad_norm": 9.219857215881348,
|
436 |
+
"learning_rate": 2.36e-05,
|
437 |
+
"loss": 7.0839,
|
438 |
+
"step": 60
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.03834066624764299,
|
442 |
+
"grad_norm": 8.762686729431152,
|
443 |
+
"learning_rate": 2.4e-05,
|
444 |
+
"loss": 6.192,
|
445 |
+
"step": 61
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.03896920175989944,
|
449 |
+
"grad_norm": 9.55370044708252,
|
450 |
+
"learning_rate": 2.44e-05,
|
451 |
+
"loss": 6.2674,
|
452 |
+
"step": 62
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.039597737272155875,
|
456 |
+
"grad_norm": 10.248711585998535,
|
457 |
+
"learning_rate": 2.48e-05,
|
458 |
+
"loss": 7.4737,
|
459 |
+
"step": 63
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.04022627278441232,
|
463 |
+
"grad_norm": 9.455551147460938,
|
464 |
+
"learning_rate": 2.5200000000000003e-05,
|
465 |
+
"loss": 6.5796,
|
466 |
+
"step": 64
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.04085480829666876,
|
470 |
+
"grad_norm": 10.217570304870605,
|
471 |
+
"learning_rate": 2.5600000000000002e-05,
|
472 |
+
"loss": 6.8329,
|
473 |
+
"step": 65
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.041483343808925204,
|
477 |
+
"grad_norm": 12.418697357177734,
|
478 |
+
"learning_rate": 2.6000000000000002e-05,
|
479 |
+
"loss": 7.0127,
|
480 |
+
"step": 66
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.04211187932118165,
|
484 |
+
"grad_norm": 13.362143516540527,
|
485 |
+
"learning_rate": 2.64e-05,
|
486 |
+
"loss": 6.3027,
|
487 |
+
"step": 67
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.04274041483343809,
|
491 |
+
"grad_norm": 10.577826499938965,
|
492 |
+
"learning_rate": 2.6800000000000004e-05,
|
493 |
+
"loss": 6.2406,
|
494 |
+
"step": 68
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.04336895034569453,
|
498 |
+
"grad_norm": 13.15530776977539,
|
499 |
+
"learning_rate": 2.7200000000000004e-05,
|
500 |
+
"loss": 7.3093,
|
501 |
+
"step": 69
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.04399748585795098,
|
505 |
+
"grad_norm": 10.775976181030273,
|
506 |
+
"learning_rate": 2.7600000000000003e-05,
|
507 |
+
"loss": 5.9398,
|
508 |
+
"step": 70
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.044626021370207415,
|
512 |
+
"grad_norm": 12.925591468811035,
|
513 |
+
"learning_rate": 2.8000000000000003e-05,
|
514 |
+
"loss": 6.7144,
|
515 |
+
"step": 71
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.04525455688246386,
|
519 |
+
"grad_norm": 12.626113891601562,
|
520 |
+
"learning_rate": 2.84e-05,
|
521 |
+
"loss": 6.5783,
|
522 |
+
"step": 72
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.0458830923947203,
|
526 |
+
"grad_norm": 14.04005241394043,
|
527 |
+
"learning_rate": 2.88e-05,
|
528 |
+
"loss": 6.1111,
|
529 |
+
"step": 73
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.046511627906976744,
|
533 |
+
"grad_norm": 14.279847145080566,
|
534 |
+
"learning_rate": 2.9199999999999998e-05,
|
535 |
+
"loss": 5.7717,
|
536 |
+
"step": 74
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.04714016341923319,
|
540 |
+
"grad_norm": 13.597288131713867,
|
541 |
+
"learning_rate": 2.96e-05,
|
542 |
+
"loss": 6.7714,
|
543 |
+
"step": 75
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.04776869893148963,
|
547 |
+
"grad_norm": 12.93455696105957,
|
548 |
+
"learning_rate": 3e-05,
|
549 |
+
"loss": 6.5082,
|
550 |
+
"step": 76
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.04839723444374607,
|
554 |
+
"grad_norm": 12.823902130126953,
|
555 |
+
"learning_rate": 3.04e-05,
|
556 |
+
"loss": 6.7108,
|
557 |
+
"step": 77
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.04902576995600252,
|
561 |
+
"grad_norm": 16.93589973449707,
|
562 |
+
"learning_rate": 3.08e-05,
|
563 |
+
"loss": 6.2773,
|
564 |
+
"step": 78
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.049654305468258955,
|
568 |
+
"grad_norm": 14.550610542297363,
|
569 |
+
"learning_rate": 3.12e-05,
|
570 |
+
"loss": 6.4329,
|
571 |
+
"step": 79
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.0502828409805154,
|
575 |
+
"grad_norm": 11.992222785949707,
|
576 |
+
"learning_rate": 3.16e-05,
|
577 |
+
"loss": 5.3369,
|
578 |
+
"step": 80
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.05091137649277184,
|
582 |
+
"grad_norm": 12.921990394592285,
|
583 |
+
"learning_rate": 3.2000000000000005e-05,
|
584 |
+
"loss": 5.8783,
|
585 |
+
"step": 81
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.051539912005028284,
|
589 |
+
"grad_norm": 14.483002662658691,
|
590 |
+
"learning_rate": 3.24e-05,
|
591 |
+
"loss": 7.4091,
|
592 |
+
"step": 82
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.05216844751728473,
|
596 |
+
"grad_norm": 15.877086639404297,
|
597 |
+
"learning_rate": 3.2800000000000004e-05,
|
598 |
+
"loss": 6.9743,
|
599 |
+
"step": 83
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.05279698302954117,
|
603 |
+
"grad_norm": 15.85240650177002,
|
604 |
+
"learning_rate": 3.32e-05,
|
605 |
+
"loss": 7.0001,
|
606 |
+
"step": 84
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.05342551854179761,
|
610 |
+
"grad_norm": 17.0369815826416,
|
611 |
+
"learning_rate": 3.3600000000000004e-05,
|
612 |
+
"loss": 5.8022,
|
613 |
+
"step": 85
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.05405405405405406,
|
617 |
+
"grad_norm": 15.62733268737793,
|
618 |
+
"learning_rate": 3.4000000000000007e-05,
|
619 |
+
"loss": 6.8172,
|
620 |
+
"step": 86
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.054682589566310495,
|
624 |
+
"grad_norm": 18.79668426513672,
|
625 |
+
"learning_rate": 3.4399999999999996e-05,
|
626 |
+
"loss": 6.6659,
|
627 |
+
"step": 87
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.05531112507856694,
|
631 |
+
"grad_norm": 15.78856086730957,
|
632 |
+
"learning_rate": 3.48e-05,
|
633 |
+
"loss": 5.7255,
|
634 |
+
"step": 88
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.05593966059082338,
|
638 |
+
"grad_norm": 13.196313858032227,
|
639 |
+
"learning_rate": 3.52e-05,
|
640 |
+
"loss": 5.8423,
|
641 |
+
"step": 89
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.056568196103079824,
|
645 |
+
"grad_norm": 16.4498233795166,
|
646 |
+
"learning_rate": 3.56e-05,
|
647 |
+
"loss": 5.4969,
|
648 |
+
"step": 90
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.05719673161533627,
|
652 |
+
"grad_norm": 15.243169784545898,
|
653 |
+
"learning_rate": 3.6e-05,
|
654 |
+
"loss": 6.0186,
|
655 |
+
"step": 91
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.05782526712759271,
|
659 |
+
"grad_norm": 17.294044494628906,
|
660 |
+
"learning_rate": 3.6400000000000004e-05,
|
661 |
+
"loss": 6.8408,
|
662 |
+
"step": 92
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.05845380263984915,
|
666 |
+
"grad_norm": 19.32530975341797,
|
667 |
+
"learning_rate": 3.68e-05,
|
668 |
+
"loss": 6.5562,
|
669 |
+
"step": 93
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.0590823381521056,
|
673 |
+
"grad_norm": 20.01514434814453,
|
674 |
+
"learning_rate": 3.72e-05,
|
675 |
+
"loss": 6.4273,
|
676 |
+
"step": 94
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.059710873664362035,
|
680 |
+
"grad_norm": 19.90467643737793,
|
681 |
+
"learning_rate": 3.76e-05,
|
682 |
+
"loss": 7.2277,
|
683 |
+
"step": 95
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.06033940917661848,
|
687 |
+
"grad_norm": 17.582975387573242,
|
688 |
+
"learning_rate": 3.8e-05,
|
689 |
+
"loss": 7.0173,
|
690 |
+
"step": 96
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.06096794468887492,
|
694 |
+
"grad_norm": 17.471969604492188,
|
695 |
+
"learning_rate": 3.8400000000000005e-05,
|
696 |
+
"loss": 6.6919,
|
697 |
+
"step": 97
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.061596480201131364,
|
701 |
+
"grad_norm": 16.06781005859375,
|
702 |
+
"learning_rate": 3.88e-05,
|
703 |
+
"loss": 6.54,
|
704 |
+
"step": 98
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.06222501571338781,
|
708 |
+
"grad_norm": 17.99164390563965,
|
709 |
+
"learning_rate": 3.9200000000000004e-05,
|
710 |
+
"loss": 5.9168,
|
711 |
+
"step": 99
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.06285355122564425,
|
715 |
+
"grad_norm": 16.01885986328125,
|
716 |
+
"learning_rate": 3.960000000000001e-05,
|
717 |
+
"loss": 5.9236,
|
718 |
+
"step": 100
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.06348208673790069,
|
722 |
+
"grad_norm": 9.705466270446777,
|
723 |
+
"learning_rate": 4e-05,
|
724 |
+
"loss": 4.4168,
|
725 |
+
"step": 101
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.06411062225015714,
|
729 |
+
"grad_norm": 21.02065086364746,
|
730 |
+
"learning_rate": 4.0400000000000006e-05,
|
731 |
+
"loss": 6.7312,
|
732 |
+
"step": 102
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.06473915776241358,
|
736 |
+
"grad_norm": 16.56360626220703,
|
737 |
+
"learning_rate": 4.08e-05,
|
738 |
+
"loss": 6.5865,
|
739 |
+
"step": 103
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.06536769327467001,
|
743 |
+
"grad_norm": 17.319807052612305,
|
744 |
+
"learning_rate": 4.12e-05,
|
745 |
+
"loss": 6.4122,
|
746 |
+
"step": 104
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.06599622878692646,
|
750 |
+
"grad_norm": 21.3114070892334,
|
751 |
+
"learning_rate": 4.16e-05,
|
752 |
+
"loss": 6.9886,
|
753 |
+
"step": 105
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.0666247642991829,
|
757 |
+
"grad_norm": 21.147327423095703,
|
758 |
+
"learning_rate": 4.2e-05,
|
759 |
+
"loss": 6.7595,
|
760 |
+
"step": 106
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.06725329981143935,
|
764 |
+
"grad_norm": 16.264938354492188,
|
765 |
+
"learning_rate": 4.24e-05,
|
766 |
+
"loss": 6.114,
|
767 |
+
"step": 107
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.0678818353236958,
|
771 |
+
"grad_norm": 20.424713134765625,
|
772 |
+
"learning_rate": 4.2800000000000004e-05,
|
773 |
+
"loss": 6.9508,
|
774 |
+
"step": 108
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.06851037083595223,
|
778 |
+
"grad_norm": 19.48565673828125,
|
779 |
+
"learning_rate": 4.32e-05,
|
780 |
+
"loss": 6.7488,
|
781 |
+
"step": 109
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.06913890634820867,
|
785 |
+
"grad_norm": 17.111894607543945,
|
786 |
+
"learning_rate": 4.36e-05,
|
787 |
+
"loss": 6.5613,
|
788 |
+
"step": 110
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.06976744186046512,
|
792 |
+
"grad_norm": 14.604440689086914,
|
793 |
+
"learning_rate": 4.4000000000000006e-05,
|
794 |
+
"loss": 6.0278,
|
795 |
+
"step": 111
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.07039597737272156,
|
799 |
+
"grad_norm": 19.691083908081055,
|
800 |
+
"learning_rate": 4.44e-05,
|
801 |
+
"loss": 6.6524,
|
802 |
+
"step": 112
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.071024512884978,
|
806 |
+
"grad_norm": 20.216869354248047,
|
807 |
+
"learning_rate": 4.4800000000000005e-05,
|
808 |
+
"loss": 7.1919,
|
809 |
+
"step": 113
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.07165304839723445,
|
813 |
+
"grad_norm": 12.34801197052002,
|
814 |
+
"learning_rate": 4.52e-05,
|
815 |
+
"loss": 5.8613,
|
816 |
+
"step": 114
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.07228158390949088,
|
820 |
+
"grad_norm": 10.295191764831543,
|
821 |
+
"learning_rate": 4.5600000000000004e-05,
|
822 |
+
"loss": 5.2475,
|
823 |
+
"step": 115
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.07291011942174733,
|
827 |
+
"grad_norm": 15.049263954162598,
|
828 |
+
"learning_rate": 4.600000000000001e-05,
|
829 |
+
"loss": 6.1295,
|
830 |
+
"step": 116
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.07353865493400377,
|
834 |
+
"grad_norm": 12.287694931030273,
|
835 |
+
"learning_rate": 4.64e-05,
|
836 |
+
"loss": 5.7615,
|
837 |
+
"step": 117
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.07416719044626022,
|
841 |
+
"grad_norm": 12.11177921295166,
|
842 |
+
"learning_rate": 4.6800000000000006e-05,
|
843 |
+
"loss": 5.8763,
|
844 |
+
"step": 118
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.07479572595851666,
|
848 |
+
"grad_norm": 11.103803634643555,
|
849 |
+
"learning_rate": 4.72e-05,
|
850 |
+
"loss": 5.5072,
|
851 |
+
"step": 119
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.0754242614707731,
|
855 |
+
"grad_norm": 10.065237998962402,
|
856 |
+
"learning_rate": 4.76e-05,
|
857 |
+
"loss": 5.4734,
|
858 |
+
"step": 120
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.07605279698302954,
|
862 |
+
"grad_norm": 15.039546012878418,
|
863 |
+
"learning_rate": 4.8e-05,
|
864 |
+
"loss": 6.2005,
|
865 |
+
"step": 121
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.07668133249528598,
|
869 |
+
"grad_norm": 10.25068473815918,
|
870 |
+
"learning_rate": 4.8400000000000004e-05,
|
871 |
+
"loss": 5.4703,
|
872 |
+
"step": 122
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.07730986800754243,
|
876 |
+
"grad_norm": 13.106711387634277,
|
877 |
+
"learning_rate": 4.88e-05,
|
878 |
+
"loss": 6.6926,
|
879 |
+
"step": 123
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.07793840351979887,
|
883 |
+
"grad_norm": 7.927108287811279,
|
884 |
+
"learning_rate": 4.92e-05,
|
885 |
+
"loss": 5.3666,
|
886 |
+
"step": 124
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.0785669390320553,
|
890 |
+
"grad_norm": 10.937745094299316,
|
891 |
+
"learning_rate": 4.96e-05,
|
892 |
+
"loss": 6.1474,
|
893 |
+
"step": 125
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.07919547454431175,
|
897 |
+
"grad_norm": 10.88867473602295,
|
898 |
+
"learning_rate": 5e-05,
|
899 |
+
"loss": 6.1572,
|
900 |
+
"step": 126
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.0798240100565682,
|
904 |
+
"grad_norm": 11.629264831542969,
|
905 |
+
"learning_rate": 5.0400000000000005e-05,
|
906 |
+
"loss": 6.391,
|
907 |
+
"step": 127
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.08045254556882464,
|
911 |
+
"grad_norm": 10.296239852905273,
|
912 |
+
"learning_rate": 5.08e-05,
|
913 |
+
"loss": 5.9652,
|
914 |
+
"step": 128
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.08108108108108109,
|
918 |
+
"grad_norm": 11.038286209106445,
|
919 |
+
"learning_rate": 5.1200000000000004e-05,
|
920 |
+
"loss": 6.1295,
|
921 |
+
"step": 129
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.08170961659333752,
|
925 |
+
"grad_norm": 9.234803199768066,
|
926 |
+
"learning_rate": 5.16e-05,
|
927 |
+
"loss": 5.796,
|
928 |
+
"step": 130
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.08233815210559396,
|
932 |
+
"grad_norm": 8.689288139343262,
|
933 |
+
"learning_rate": 5.2000000000000004e-05,
|
934 |
+
"loss": 5.3704,
|
935 |
+
"step": 131
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.08296668761785041,
|
939 |
+
"grad_norm": 15.41921615600586,
|
940 |
+
"learning_rate": 5.2400000000000007e-05,
|
941 |
+
"loss": 6.0926,
|
942 |
+
"step": 132
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.08359522313010685,
|
946 |
+
"grad_norm": 8.419554710388184,
|
947 |
+
"learning_rate": 5.28e-05,
|
948 |
+
"loss": 5.8071,
|
949 |
+
"step": 133
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.0842237586423633,
|
953 |
+
"grad_norm": 8.644979476928711,
|
954 |
+
"learning_rate": 5.3200000000000006e-05,
|
955 |
+
"loss": 5.9138,
|
956 |
+
"step": 134
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.08485229415461974,
|
960 |
+
"grad_norm": 11.236026763916016,
|
961 |
+
"learning_rate": 5.360000000000001e-05,
|
962 |
+
"loss": 5.9092,
|
963 |
+
"step": 135
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.08548082966687617,
|
967 |
+
"grad_norm": 9.669437408447266,
|
968 |
+
"learning_rate": 5.4000000000000005e-05,
|
969 |
+
"loss": 5.3778,
|
970 |
+
"step": 136
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.08610936517913262,
|
974 |
+
"grad_norm": 10.624286651611328,
|
975 |
+
"learning_rate": 5.440000000000001e-05,
|
976 |
+
"loss": 5.4098,
|
977 |
+
"step": 137
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.08673790069138906,
|
981 |
+
"grad_norm": 8.831917762756348,
|
982 |
+
"learning_rate": 5.4800000000000004e-05,
|
983 |
+
"loss": 5.3806,
|
984 |
+
"step": 138
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.08736643620364551,
|
988 |
+
"grad_norm": 8.536581993103027,
|
989 |
+
"learning_rate": 5.520000000000001e-05,
|
990 |
+
"loss": 5.9237,
|
991 |
+
"step": 139
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.08799497171590195,
|
995 |
+
"grad_norm": 7.873721599578857,
|
996 |
+
"learning_rate": 5.560000000000001e-05,
|
997 |
+
"loss": 5.423,
|
998 |
+
"step": 140
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.08862350722815839,
|
1002 |
+
"grad_norm": 8.635188102722168,
|
1003 |
+
"learning_rate": 5.6000000000000006e-05,
|
1004 |
+
"loss": 5.6118,
|
1005 |
+
"step": 141
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.08925204274041483,
|
1009 |
+
"grad_norm": 13.39542293548584,
|
1010 |
+
"learning_rate": 5.6399999999999995e-05,
|
1011 |
+
"loss": 5.2728,
|
1012 |
+
"step": 142
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.08988057825267128,
|
1016 |
+
"grad_norm": 12.998862266540527,
|
1017 |
+
"learning_rate": 5.68e-05,
|
1018 |
+
"loss": 6.9434,
|
1019 |
+
"step": 143
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.09050911376492772,
|
1023 |
+
"grad_norm": 8.149964332580566,
|
1024 |
+
"learning_rate": 5.72e-05,
|
1025 |
+
"loss": 5.3559,
|
1026 |
+
"step": 144
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.09113764927718417,
|
1030 |
+
"grad_norm": 7.66946268081665,
|
1031 |
+
"learning_rate": 5.76e-05,
|
1032 |
+
"loss": 5.5603,
|
1033 |
+
"step": 145
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.0917661847894406,
|
1037 |
+
"grad_norm": 9.277702331542969,
|
1038 |
+
"learning_rate": 5.8e-05,
|
1039 |
+
"loss": 4.9751,
|
1040 |
+
"step": 146
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.09239472030169704,
|
1044 |
+
"grad_norm": 7.442458152770996,
|
1045 |
+
"learning_rate": 5.8399999999999997e-05,
|
1046 |
+
"loss": 5.1653,
|
1047 |
+
"step": 147
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.09302325581395349,
|
1051 |
+
"grad_norm": 8.340120315551758,
|
1052 |
+
"learning_rate": 5.88e-05,
|
1053 |
+
"loss": 5.5422,
|
1054 |
+
"step": 148
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.09365179132620993,
|
1058 |
+
"grad_norm": 6.774919033050537,
|
1059 |
+
"learning_rate": 5.92e-05,
|
1060 |
+
"loss": 5.0187,
|
1061 |
+
"step": 149
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.09428032683846638,
|
1065 |
+
"grad_norm": 8.363201141357422,
|
1066 |
+
"learning_rate": 5.96e-05,
|
1067 |
+
"loss": 4.9803,
|
1068 |
+
"step": 150
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.09490886235072282,
|
1072 |
+
"grad_norm": 7.182234764099121,
|
1073 |
+
"learning_rate": 6e-05,
|
1074 |
+
"loss": 5.2913,
|
1075 |
+
"step": 151
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.09553739786297925,
|
1079 |
+
"grad_norm": 9.065616607666016,
|
1080 |
+
"learning_rate": 6.04e-05,
|
1081 |
+
"loss": 5.8604,
|
1082 |
+
"step": 152
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.0961659333752357,
|
1086 |
+
"grad_norm": 7.823053359985352,
|
1087 |
+
"learning_rate": 6.08e-05,
|
1088 |
+
"loss": 5.7326,
|
1089 |
+
"step": 153
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.09679446888749214,
|
1093 |
+
"grad_norm": 8.177785873413086,
|
1094 |
+
"learning_rate": 6.12e-05,
|
1095 |
+
"loss": 5.5663,
|
1096 |
+
"step": 154
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.09742300439974859,
|
1100 |
+
"grad_norm": 8.24718952178955,
|
1101 |
+
"learning_rate": 6.16e-05,
|
1102 |
+
"loss": 5.5606,
|
1103 |
+
"step": 155
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.09805153991200503,
|
1107 |
+
"grad_norm": 10.260727882385254,
|
1108 |
+
"learning_rate": 6.2e-05,
|
1109 |
+
"loss": 5.7043,
|
1110 |
+
"step": 156
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.09868007542426147,
|
1114 |
+
"grad_norm": 11.80507755279541,
|
1115 |
+
"learning_rate": 6.24e-05,
|
1116 |
+
"loss": 6.0268,
|
1117 |
+
"step": 157
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.09930861093651791,
|
1121 |
+
"grad_norm": 9.024588584899902,
|
1122 |
+
"learning_rate": 6.280000000000001e-05,
|
1123 |
+
"loss": 6.2249,
|
1124 |
+
"step": 158
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.09993714644877436,
|
1128 |
+
"grad_norm": 6.814016342163086,
|
1129 |
+
"learning_rate": 6.32e-05,
|
1130 |
+
"loss": 5.0123,
|
1131 |
+
"step": 159
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.1005656819610308,
|
1135 |
+
"grad_norm": 6.701868534088135,
|
1136 |
+
"learning_rate": 6.36e-05,
|
1137 |
+
"loss": 4.9993,
|
1138 |
+
"step": 160
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.1005656819610308,
|
1142 |
+
"eval_loss": 5.605074882507324,
|
1143 |
+
"eval_runtime": 1565.1736,
|
1144 |
+
"eval_samples_per_second": 1.647,
|
1145 |
+
"eval_steps_per_second": 1.647,
|
1146 |
+
"step": 160
|
1147 |
+
}
|
1148 |
+
],
|
1149 |
+
"logging_steps": 1,
|
1150 |
+
"max_steps": 1591,
|
1151 |
+
"num_input_tokens_seen": 0,
|
1152 |
+
"num_train_epochs": 1,
|
1153 |
+
"save_steps": 160,
|
1154 |
+
"stateful_callbacks": {
|
1155 |
+
"TrainerControl": {
|
1156 |
+
"args": {
|
1157 |
+
"should_epoch_stop": false,
|
1158 |
+
"should_evaluate": false,
|
1159 |
+
"should_log": false,
|
1160 |
+
"should_save": true,
|
1161 |
+
"should_training_stop": false
|
1162 |
+
},
|
1163 |
+
"attributes": {}
|
1164 |
+
}
|
1165 |
+
},
|
1166 |
+
"total_flos": 2.0460495771690598e+18,
|
1167 |
+
"train_batch_size": 2,
|
1168 |
+
"trial_name": null,
|
1169 |
+
"trial_params": null
|
1170 |
+
}
|
checkpoint-160/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bd0dbc47a9812516a7dc00a4bccf2e85152bb7b0be6caacda2e7ed6fd24ad7b
|
3 |
+
size 8824
|
checkpoint-160/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-160/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|