xtristan commited on
Commit
a78b614
·
verified ·
1 Parent(s): d4cb465

Training in progress, step 160, checkpoint

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-160/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-32B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-32B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 64,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "up_proj",
29
+ "down_proj",
30
+ "q_proj",
31
+ "o_proj",
32
+ "k_proj",
33
+ "gate_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81a7c8fb6926ed77611679521777c51ce5c35bd629f4fb5ed95f5b7887d3848c
3
+ size 1073864104
checkpoint-160/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-160/global_step160/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79153c2904a32cc4e37ce3f8baaa94938b512fc2128c9ffb41d72b1b15c1d8f8
3
+ size 3238110642
checkpoint-160/global_step160/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b2c68edabb78448950db70bf14d57f1fdccbac1435bc2475116b99eee612d2
3
+ size 1571050088
checkpoint-160/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step160
checkpoint-160/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef6ff4fb3a183b6196ff5e2862d7df37aaff715d84048357ff9e907ec4b14171
3
+ size 14244
checkpoint-160/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5d5fcd73784cccb38c41c46349ad61078e83929b7322c693430925ddb0c625
3
+ size 1064
checkpoint-160/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-160/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
checkpoint-160/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,1170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.1005656819610308,
6
+ "eval_steps": 160,
7
+ "global_step": 160,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0006285355122564425,
14
+ "grad_norm": 2.96633243560791,
15
+ "learning_rate": 0.0,
16
+ "loss": 7.5468,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0006285355122564425,
21
+ "eval_loss": 7.076071739196777,
22
+ "eval_runtime": 1556.6109,
23
+ "eval_samples_per_second": 1.656,
24
+ "eval_steps_per_second": 1.656,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.001257071024512885,
29
+ "grad_norm": 2.7123501300811768,
30
+ "learning_rate": 4.0000000000000003e-07,
31
+ "loss": 6.3309,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.0018856065367693275,
36
+ "grad_norm": 2.4243223667144775,
37
+ "learning_rate": 8.000000000000001e-07,
38
+ "loss": 6.7763,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.00251414204902577,
43
+ "grad_norm": 2.319216728210449,
44
+ "learning_rate": 1.2000000000000002e-06,
45
+ "loss": 6.8187,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.0031426775612822125,
50
+ "grad_norm": 2.4935989379882812,
51
+ "learning_rate": 1.6000000000000001e-06,
52
+ "loss": 7.0526,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.003771213073538655,
57
+ "grad_norm": 2.1718926429748535,
58
+ "learning_rate": 2.0000000000000003e-06,
59
+ "loss": 6.7646,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.0043997485857950975,
64
+ "grad_norm": 2.177217960357666,
65
+ "learning_rate": 2.4000000000000003e-06,
66
+ "loss": 6.6131,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.00502828409805154,
71
+ "grad_norm": 2.9915874004364014,
72
+ "learning_rate": 2.8000000000000003e-06,
73
+ "loss": 7.6544,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.0056568196103079825,
78
+ "grad_norm": 2.6981074810028076,
79
+ "learning_rate": 3.2000000000000003e-06,
80
+ "loss": 6.799,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.006285355122564425,
85
+ "grad_norm": 4.512426376342773,
86
+ "learning_rate": 3.6e-06,
87
+ "loss": 8.3895,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.0069138906348208675,
92
+ "grad_norm": 2.3968913555145264,
93
+ "learning_rate": 4.000000000000001e-06,
94
+ "loss": 6.3478,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.00754242614707731,
99
+ "grad_norm": 1.9744027853012085,
100
+ "learning_rate": 4.4e-06,
101
+ "loss": 5.5536,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.008170961659333752,
106
+ "grad_norm": 3.050507068634033,
107
+ "learning_rate": 4.800000000000001e-06,
108
+ "loss": 6.5491,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.008799497171590195,
113
+ "grad_norm": 3.0034799575805664,
114
+ "learning_rate": 5.2e-06,
115
+ "loss": 7.2764,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.009428032683846637,
120
+ "grad_norm": 2.323613405227661,
121
+ "learning_rate": 5.600000000000001e-06,
122
+ "loss": 6.8805,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.01005656819610308,
127
+ "grad_norm": 3.129593849182129,
128
+ "learning_rate": 6e-06,
129
+ "loss": 7.3171,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.010685103708359522,
134
+ "grad_norm": 2.296137571334839,
135
+ "learning_rate": 6.4000000000000006e-06,
136
+ "loss": 6.4251,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.011313639220615965,
141
+ "grad_norm": 2.637282133102417,
142
+ "learning_rate": 6.800000000000001e-06,
143
+ "loss": 6.6142,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.011942174732872407,
148
+ "grad_norm": 2.1313271522521973,
149
+ "learning_rate": 7.2e-06,
150
+ "loss": 6.3841,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.01257071024512885,
155
+ "grad_norm": 2.7492284774780273,
156
+ "learning_rate": 7.6e-06,
157
+ "loss": 6.8148,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.013199245757385292,
162
+ "grad_norm": 2.945878267288208,
163
+ "learning_rate": 8.000000000000001e-06,
164
+ "loss": 6.9732,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.013827781269641735,
169
+ "grad_norm": 3.709951162338257,
170
+ "learning_rate": 8.400000000000001e-06,
171
+ "loss": 7.7273,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.014456316781898177,
176
+ "grad_norm": 3.023289203643799,
177
+ "learning_rate": 8.8e-06,
178
+ "loss": 7.0649,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.01508485229415462,
183
+ "grad_norm": 3.163715124130249,
184
+ "learning_rate": 9.2e-06,
185
+ "loss": 6.9342,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.01571338780641106,
190
+ "grad_norm": 4.114445686340332,
191
+ "learning_rate": 9.600000000000001e-06,
192
+ "loss": 8.119,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.016341923318667503,
197
+ "grad_norm": 3.021068572998047,
198
+ "learning_rate": 1e-05,
199
+ "loss": 7.4067,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.01697045883092395,
204
+ "grad_norm": 3.724407911300659,
205
+ "learning_rate": 1.04e-05,
206
+ "loss": 7.3869,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.01759899434318039,
211
+ "grad_norm": 2.656257390975952,
212
+ "learning_rate": 1.08e-05,
213
+ "loss": 5.9961,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.018227529855436832,
218
+ "grad_norm": 2.7785143852233887,
219
+ "learning_rate": 1.1200000000000001e-05,
220
+ "loss": 5.6596,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.018856065367693273,
225
+ "grad_norm": 3.130934715270996,
226
+ "learning_rate": 1.16e-05,
227
+ "loss": 6.6092,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.01948460087994972,
232
+ "grad_norm": 3.42301869392395,
233
+ "learning_rate": 1.2e-05,
234
+ "loss": 6.3373,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.02011313639220616,
239
+ "grad_norm": 2.8691611289978027,
240
+ "learning_rate": 1.24e-05,
241
+ "loss": 6.5923,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.020741671904462602,
246
+ "grad_norm": 2.917086601257324,
247
+ "learning_rate": 1.2800000000000001e-05,
248
+ "loss": 5.9773,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.021370207416719043,
253
+ "grad_norm": 4.07196044921875,
254
+ "learning_rate": 1.32e-05,
255
+ "loss": 7.4423,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.02199874292897549,
260
+ "grad_norm": 4.738312244415283,
261
+ "learning_rate": 1.3600000000000002e-05,
262
+ "loss": 7.5113,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.02262727844123193,
267
+ "grad_norm": 3.898664712905884,
268
+ "learning_rate": 1.4000000000000001e-05,
269
+ "loss": 6.8738,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.023255813953488372,
274
+ "grad_norm": 3.7448792457580566,
275
+ "learning_rate": 1.44e-05,
276
+ "loss": 6.9615,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.023884349465744813,
281
+ "grad_norm": 3.5938379764556885,
282
+ "learning_rate": 1.48e-05,
283
+ "loss": 6.0651,
284
+ "step": 38
285
+ },
286
+ {
287
+ "epoch": 0.02451288497800126,
288
+ "grad_norm": 4.253636360168457,
289
+ "learning_rate": 1.52e-05,
290
+ "loss": 6.9986,
291
+ "step": 39
292
+ },
293
+ {
294
+ "epoch": 0.0251414204902577,
295
+ "grad_norm": 4.985451698303223,
296
+ "learning_rate": 1.56e-05,
297
+ "loss": 7.252,
298
+ "step": 40
299
+ },
300
+ {
301
+ "epoch": 0.025769956002514142,
302
+ "grad_norm": 4.376275062561035,
303
+ "learning_rate": 1.6000000000000003e-05,
304
+ "loss": 6.8091,
305
+ "step": 41
306
+ },
307
+ {
308
+ "epoch": 0.026398491514770583,
309
+ "grad_norm": 4.697645664215088,
310
+ "learning_rate": 1.6400000000000002e-05,
311
+ "loss": 6.4319,
312
+ "step": 42
313
+ },
314
+ {
315
+ "epoch": 0.02702702702702703,
316
+ "grad_norm": 5.258227348327637,
317
+ "learning_rate": 1.6800000000000002e-05,
318
+ "loss": 6.7672,
319
+ "step": 43
320
+ },
321
+ {
322
+ "epoch": 0.02765556253928347,
323
+ "grad_norm": 5.063000679016113,
324
+ "learning_rate": 1.7199999999999998e-05,
325
+ "loss": 6.3354,
326
+ "step": 44
327
+ },
328
+ {
329
+ "epoch": 0.028284098051539912,
330
+ "grad_norm": 4.573636531829834,
331
+ "learning_rate": 1.76e-05,
332
+ "loss": 6.3374,
333
+ "step": 45
334
+ },
335
+ {
336
+ "epoch": 0.028912633563796353,
337
+ "grad_norm": 4.72340202331543,
338
+ "learning_rate": 1.8e-05,
339
+ "loss": 6.6553,
340
+ "step": 46
341
+ },
342
+ {
343
+ "epoch": 0.0295411690760528,
344
+ "grad_norm": 6.681248664855957,
345
+ "learning_rate": 1.84e-05,
346
+ "loss": 7.7157,
347
+ "step": 47
348
+ },
349
+ {
350
+ "epoch": 0.03016970458830924,
351
+ "grad_norm": 5.952408313751221,
352
+ "learning_rate": 1.88e-05,
353
+ "loss": 5.8215,
354
+ "step": 48
355
+ },
356
+ {
357
+ "epoch": 0.030798240100565682,
358
+ "grad_norm": 6.599308967590332,
359
+ "learning_rate": 1.9200000000000003e-05,
360
+ "loss": 6.921,
361
+ "step": 49
362
+ },
363
+ {
364
+ "epoch": 0.03142677561282212,
365
+ "grad_norm": 6.538867473602295,
366
+ "learning_rate": 1.9600000000000002e-05,
367
+ "loss": 7.1274,
368
+ "step": 50
369
+ },
370
+ {
371
+ "epoch": 0.03205531112507857,
372
+ "grad_norm": 5.91294527053833,
373
+ "learning_rate": 2e-05,
374
+ "loss": 6.7263,
375
+ "step": 51
376
+ },
377
+ {
378
+ "epoch": 0.03268384663733501,
379
+ "grad_norm": 7.943373203277588,
380
+ "learning_rate": 2.04e-05,
381
+ "loss": 7.4335,
382
+ "step": 52
383
+ },
384
+ {
385
+ "epoch": 0.03331238214959145,
386
+ "grad_norm": 7.023540496826172,
387
+ "learning_rate": 2.08e-05,
388
+ "loss": 6.3428,
389
+ "step": 53
390
+ },
391
+ {
392
+ "epoch": 0.0339409176618479,
393
+ "grad_norm": 7.031850814819336,
394
+ "learning_rate": 2.12e-05,
395
+ "loss": 6.2423,
396
+ "step": 54
397
+ },
398
+ {
399
+ "epoch": 0.034569453174104335,
400
+ "grad_norm": 6.891653537750244,
401
+ "learning_rate": 2.16e-05,
402
+ "loss": 6.4081,
403
+ "step": 55
404
+ },
405
+ {
406
+ "epoch": 0.03519798868636078,
407
+ "grad_norm": 8.165786743164062,
408
+ "learning_rate": 2.2000000000000003e-05,
409
+ "loss": 7.1081,
410
+ "step": 56
411
+ },
412
+ {
413
+ "epoch": 0.035826524198617225,
414
+ "grad_norm": 9.146330833435059,
415
+ "learning_rate": 2.2400000000000002e-05,
416
+ "loss": 7.4309,
417
+ "step": 57
418
+ },
419
+ {
420
+ "epoch": 0.036455059710873663,
421
+ "grad_norm": 8.637526512145996,
422
+ "learning_rate": 2.2800000000000002e-05,
423
+ "loss": 6.9889,
424
+ "step": 58
425
+ },
426
+ {
427
+ "epoch": 0.03708359522313011,
428
+ "grad_norm": 8.397353172302246,
429
+ "learning_rate": 2.32e-05,
430
+ "loss": 5.8222,
431
+ "step": 59
432
+ },
433
+ {
434
+ "epoch": 0.03771213073538655,
435
+ "grad_norm": 9.219857215881348,
436
+ "learning_rate": 2.36e-05,
437
+ "loss": 7.0839,
438
+ "step": 60
439
+ },
440
+ {
441
+ "epoch": 0.03834066624764299,
442
+ "grad_norm": 8.762686729431152,
443
+ "learning_rate": 2.4e-05,
444
+ "loss": 6.192,
445
+ "step": 61
446
+ },
447
+ {
448
+ "epoch": 0.03896920175989944,
449
+ "grad_norm": 9.55370044708252,
450
+ "learning_rate": 2.44e-05,
451
+ "loss": 6.2674,
452
+ "step": 62
453
+ },
454
+ {
455
+ "epoch": 0.039597737272155875,
456
+ "grad_norm": 10.248711585998535,
457
+ "learning_rate": 2.48e-05,
458
+ "loss": 7.4737,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 0.04022627278441232,
463
+ "grad_norm": 9.455551147460938,
464
+ "learning_rate": 2.5200000000000003e-05,
465
+ "loss": 6.5796,
466
+ "step": 64
467
+ },
468
+ {
469
+ "epoch": 0.04085480829666876,
470
+ "grad_norm": 10.217570304870605,
471
+ "learning_rate": 2.5600000000000002e-05,
472
+ "loss": 6.8329,
473
+ "step": 65
474
+ },
475
+ {
476
+ "epoch": 0.041483343808925204,
477
+ "grad_norm": 12.418697357177734,
478
+ "learning_rate": 2.6000000000000002e-05,
479
+ "loss": 7.0127,
480
+ "step": 66
481
+ },
482
+ {
483
+ "epoch": 0.04211187932118165,
484
+ "grad_norm": 13.362143516540527,
485
+ "learning_rate": 2.64e-05,
486
+ "loss": 6.3027,
487
+ "step": 67
488
+ },
489
+ {
490
+ "epoch": 0.04274041483343809,
491
+ "grad_norm": 10.577826499938965,
492
+ "learning_rate": 2.6800000000000004e-05,
493
+ "loss": 6.2406,
494
+ "step": 68
495
+ },
496
+ {
497
+ "epoch": 0.04336895034569453,
498
+ "grad_norm": 13.15530776977539,
499
+ "learning_rate": 2.7200000000000004e-05,
500
+ "loss": 7.3093,
501
+ "step": 69
502
+ },
503
+ {
504
+ "epoch": 0.04399748585795098,
505
+ "grad_norm": 10.775976181030273,
506
+ "learning_rate": 2.7600000000000003e-05,
507
+ "loss": 5.9398,
508
+ "step": 70
509
+ },
510
+ {
511
+ "epoch": 0.044626021370207415,
512
+ "grad_norm": 12.925591468811035,
513
+ "learning_rate": 2.8000000000000003e-05,
514
+ "loss": 6.7144,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 0.04525455688246386,
519
+ "grad_norm": 12.626113891601562,
520
+ "learning_rate": 2.84e-05,
521
+ "loss": 6.5783,
522
+ "step": 72
523
+ },
524
+ {
525
+ "epoch": 0.0458830923947203,
526
+ "grad_norm": 14.04005241394043,
527
+ "learning_rate": 2.88e-05,
528
+ "loss": 6.1111,
529
+ "step": 73
530
+ },
531
+ {
532
+ "epoch": 0.046511627906976744,
533
+ "grad_norm": 14.279847145080566,
534
+ "learning_rate": 2.9199999999999998e-05,
535
+ "loss": 5.7717,
536
+ "step": 74
537
+ },
538
+ {
539
+ "epoch": 0.04714016341923319,
540
+ "grad_norm": 13.597288131713867,
541
+ "learning_rate": 2.96e-05,
542
+ "loss": 6.7714,
543
+ "step": 75
544
+ },
545
+ {
546
+ "epoch": 0.04776869893148963,
547
+ "grad_norm": 12.93455696105957,
548
+ "learning_rate": 3e-05,
549
+ "loss": 6.5082,
550
+ "step": 76
551
+ },
552
+ {
553
+ "epoch": 0.04839723444374607,
554
+ "grad_norm": 12.823902130126953,
555
+ "learning_rate": 3.04e-05,
556
+ "loss": 6.7108,
557
+ "step": 77
558
+ },
559
+ {
560
+ "epoch": 0.04902576995600252,
561
+ "grad_norm": 16.93589973449707,
562
+ "learning_rate": 3.08e-05,
563
+ "loss": 6.2773,
564
+ "step": 78
565
+ },
566
+ {
567
+ "epoch": 0.049654305468258955,
568
+ "grad_norm": 14.550610542297363,
569
+ "learning_rate": 3.12e-05,
570
+ "loss": 6.4329,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 0.0502828409805154,
575
+ "grad_norm": 11.992222785949707,
576
+ "learning_rate": 3.16e-05,
577
+ "loss": 5.3369,
578
+ "step": 80
579
+ },
580
+ {
581
+ "epoch": 0.05091137649277184,
582
+ "grad_norm": 12.921990394592285,
583
+ "learning_rate": 3.2000000000000005e-05,
584
+ "loss": 5.8783,
585
+ "step": 81
586
+ },
587
+ {
588
+ "epoch": 0.051539912005028284,
589
+ "grad_norm": 14.483002662658691,
590
+ "learning_rate": 3.24e-05,
591
+ "loss": 7.4091,
592
+ "step": 82
593
+ },
594
+ {
595
+ "epoch": 0.05216844751728473,
596
+ "grad_norm": 15.877086639404297,
597
+ "learning_rate": 3.2800000000000004e-05,
598
+ "loss": 6.9743,
599
+ "step": 83
600
+ },
601
+ {
602
+ "epoch": 0.05279698302954117,
603
+ "grad_norm": 15.85240650177002,
604
+ "learning_rate": 3.32e-05,
605
+ "loss": 7.0001,
606
+ "step": 84
607
+ },
608
+ {
609
+ "epoch": 0.05342551854179761,
610
+ "grad_norm": 17.0369815826416,
611
+ "learning_rate": 3.3600000000000004e-05,
612
+ "loss": 5.8022,
613
+ "step": 85
614
+ },
615
+ {
616
+ "epoch": 0.05405405405405406,
617
+ "grad_norm": 15.62733268737793,
618
+ "learning_rate": 3.4000000000000007e-05,
619
+ "loss": 6.8172,
620
+ "step": 86
621
+ },
622
+ {
623
+ "epoch": 0.054682589566310495,
624
+ "grad_norm": 18.79668426513672,
625
+ "learning_rate": 3.4399999999999996e-05,
626
+ "loss": 6.6659,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 0.05531112507856694,
631
+ "grad_norm": 15.78856086730957,
632
+ "learning_rate": 3.48e-05,
633
+ "loss": 5.7255,
634
+ "step": 88
635
+ },
636
+ {
637
+ "epoch": 0.05593966059082338,
638
+ "grad_norm": 13.196313858032227,
639
+ "learning_rate": 3.52e-05,
640
+ "loss": 5.8423,
641
+ "step": 89
642
+ },
643
+ {
644
+ "epoch": 0.056568196103079824,
645
+ "grad_norm": 16.4498233795166,
646
+ "learning_rate": 3.56e-05,
647
+ "loss": 5.4969,
648
+ "step": 90
649
+ },
650
+ {
651
+ "epoch": 0.05719673161533627,
652
+ "grad_norm": 15.243169784545898,
653
+ "learning_rate": 3.6e-05,
654
+ "loss": 6.0186,
655
+ "step": 91
656
+ },
657
+ {
658
+ "epoch": 0.05782526712759271,
659
+ "grad_norm": 17.294044494628906,
660
+ "learning_rate": 3.6400000000000004e-05,
661
+ "loss": 6.8408,
662
+ "step": 92
663
+ },
664
+ {
665
+ "epoch": 0.05845380263984915,
666
+ "grad_norm": 19.32530975341797,
667
+ "learning_rate": 3.68e-05,
668
+ "loss": 6.5562,
669
+ "step": 93
670
+ },
671
+ {
672
+ "epoch": 0.0590823381521056,
673
+ "grad_norm": 20.01514434814453,
674
+ "learning_rate": 3.72e-05,
675
+ "loss": 6.4273,
676
+ "step": 94
677
+ },
678
+ {
679
+ "epoch": 0.059710873664362035,
680
+ "grad_norm": 19.90467643737793,
681
+ "learning_rate": 3.76e-05,
682
+ "loss": 7.2277,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 0.06033940917661848,
687
+ "grad_norm": 17.582975387573242,
688
+ "learning_rate": 3.8e-05,
689
+ "loss": 7.0173,
690
+ "step": 96
691
+ },
692
+ {
693
+ "epoch": 0.06096794468887492,
694
+ "grad_norm": 17.471969604492188,
695
+ "learning_rate": 3.8400000000000005e-05,
696
+ "loss": 6.6919,
697
+ "step": 97
698
+ },
699
+ {
700
+ "epoch": 0.061596480201131364,
701
+ "grad_norm": 16.06781005859375,
702
+ "learning_rate": 3.88e-05,
703
+ "loss": 6.54,
704
+ "step": 98
705
+ },
706
+ {
707
+ "epoch": 0.06222501571338781,
708
+ "grad_norm": 17.99164390563965,
709
+ "learning_rate": 3.9200000000000004e-05,
710
+ "loss": 5.9168,
711
+ "step": 99
712
+ },
713
+ {
714
+ "epoch": 0.06285355122564425,
715
+ "grad_norm": 16.01885986328125,
716
+ "learning_rate": 3.960000000000001e-05,
717
+ "loss": 5.9236,
718
+ "step": 100
719
+ },
720
+ {
721
+ "epoch": 0.06348208673790069,
722
+ "grad_norm": 9.705466270446777,
723
+ "learning_rate": 4e-05,
724
+ "loss": 4.4168,
725
+ "step": 101
726
+ },
727
+ {
728
+ "epoch": 0.06411062225015714,
729
+ "grad_norm": 21.02065086364746,
730
+ "learning_rate": 4.0400000000000006e-05,
731
+ "loss": 6.7312,
732
+ "step": 102
733
+ },
734
+ {
735
+ "epoch": 0.06473915776241358,
736
+ "grad_norm": 16.56360626220703,
737
+ "learning_rate": 4.08e-05,
738
+ "loss": 6.5865,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 0.06536769327467001,
743
+ "grad_norm": 17.319807052612305,
744
+ "learning_rate": 4.12e-05,
745
+ "loss": 6.4122,
746
+ "step": 104
747
+ },
748
+ {
749
+ "epoch": 0.06599622878692646,
750
+ "grad_norm": 21.3114070892334,
751
+ "learning_rate": 4.16e-05,
752
+ "loss": 6.9886,
753
+ "step": 105
754
+ },
755
+ {
756
+ "epoch": 0.0666247642991829,
757
+ "grad_norm": 21.147327423095703,
758
+ "learning_rate": 4.2e-05,
759
+ "loss": 6.7595,
760
+ "step": 106
761
+ },
762
+ {
763
+ "epoch": 0.06725329981143935,
764
+ "grad_norm": 16.264938354492188,
765
+ "learning_rate": 4.24e-05,
766
+ "loss": 6.114,
767
+ "step": 107
768
+ },
769
+ {
770
+ "epoch": 0.0678818353236958,
771
+ "grad_norm": 20.424713134765625,
772
+ "learning_rate": 4.2800000000000004e-05,
773
+ "loss": 6.9508,
774
+ "step": 108
775
+ },
776
+ {
777
+ "epoch": 0.06851037083595223,
778
+ "grad_norm": 19.48565673828125,
779
+ "learning_rate": 4.32e-05,
780
+ "loss": 6.7488,
781
+ "step": 109
782
+ },
783
+ {
784
+ "epoch": 0.06913890634820867,
785
+ "grad_norm": 17.111894607543945,
786
+ "learning_rate": 4.36e-05,
787
+ "loss": 6.5613,
788
+ "step": 110
789
+ },
790
+ {
791
+ "epoch": 0.06976744186046512,
792
+ "grad_norm": 14.604440689086914,
793
+ "learning_rate": 4.4000000000000006e-05,
794
+ "loss": 6.0278,
795
+ "step": 111
796
+ },
797
+ {
798
+ "epoch": 0.07039597737272156,
799
+ "grad_norm": 19.691083908081055,
800
+ "learning_rate": 4.44e-05,
801
+ "loss": 6.6524,
802
+ "step": 112
803
+ },
804
+ {
805
+ "epoch": 0.071024512884978,
806
+ "grad_norm": 20.216869354248047,
807
+ "learning_rate": 4.4800000000000005e-05,
808
+ "loss": 7.1919,
809
+ "step": 113
810
+ },
811
+ {
812
+ "epoch": 0.07165304839723445,
813
+ "grad_norm": 12.34801197052002,
814
+ "learning_rate": 4.52e-05,
815
+ "loss": 5.8613,
816
+ "step": 114
817
+ },
818
+ {
819
+ "epoch": 0.07228158390949088,
820
+ "grad_norm": 10.295191764831543,
821
+ "learning_rate": 4.5600000000000004e-05,
822
+ "loss": 5.2475,
823
+ "step": 115
824
+ },
825
+ {
826
+ "epoch": 0.07291011942174733,
827
+ "grad_norm": 15.049263954162598,
828
+ "learning_rate": 4.600000000000001e-05,
829
+ "loss": 6.1295,
830
+ "step": 116
831
+ },
832
+ {
833
+ "epoch": 0.07353865493400377,
834
+ "grad_norm": 12.287694931030273,
835
+ "learning_rate": 4.64e-05,
836
+ "loss": 5.7615,
837
+ "step": 117
838
+ },
839
+ {
840
+ "epoch": 0.07416719044626022,
841
+ "grad_norm": 12.11177921295166,
842
+ "learning_rate": 4.6800000000000006e-05,
843
+ "loss": 5.8763,
844
+ "step": 118
845
+ },
846
+ {
847
+ "epoch": 0.07479572595851666,
848
+ "grad_norm": 11.103803634643555,
849
+ "learning_rate": 4.72e-05,
850
+ "loss": 5.5072,
851
+ "step": 119
852
+ },
853
+ {
854
+ "epoch": 0.0754242614707731,
855
+ "grad_norm": 10.065237998962402,
856
+ "learning_rate": 4.76e-05,
857
+ "loss": 5.4734,
858
+ "step": 120
859
+ },
860
+ {
861
+ "epoch": 0.07605279698302954,
862
+ "grad_norm": 15.039546012878418,
863
+ "learning_rate": 4.8e-05,
864
+ "loss": 6.2005,
865
+ "step": 121
866
+ },
867
+ {
868
+ "epoch": 0.07668133249528598,
869
+ "grad_norm": 10.25068473815918,
870
+ "learning_rate": 4.8400000000000004e-05,
871
+ "loss": 5.4703,
872
+ "step": 122
873
+ },
874
+ {
875
+ "epoch": 0.07730986800754243,
876
+ "grad_norm": 13.106711387634277,
877
+ "learning_rate": 4.88e-05,
878
+ "loss": 6.6926,
879
+ "step": 123
880
+ },
881
+ {
882
+ "epoch": 0.07793840351979887,
883
+ "grad_norm": 7.927108287811279,
884
+ "learning_rate": 4.92e-05,
885
+ "loss": 5.3666,
886
+ "step": 124
887
+ },
888
+ {
889
+ "epoch": 0.0785669390320553,
890
+ "grad_norm": 10.937745094299316,
891
+ "learning_rate": 4.96e-05,
892
+ "loss": 6.1474,
893
+ "step": 125
894
+ },
895
+ {
896
+ "epoch": 0.07919547454431175,
897
+ "grad_norm": 10.88867473602295,
898
+ "learning_rate": 5e-05,
899
+ "loss": 6.1572,
900
+ "step": 126
901
+ },
902
+ {
903
+ "epoch": 0.0798240100565682,
904
+ "grad_norm": 11.629264831542969,
905
+ "learning_rate": 5.0400000000000005e-05,
906
+ "loss": 6.391,
907
+ "step": 127
908
+ },
909
+ {
910
+ "epoch": 0.08045254556882464,
911
+ "grad_norm": 10.296239852905273,
912
+ "learning_rate": 5.08e-05,
913
+ "loss": 5.9652,
914
+ "step": 128
915
+ },
916
+ {
917
+ "epoch": 0.08108108108108109,
918
+ "grad_norm": 11.038286209106445,
919
+ "learning_rate": 5.1200000000000004e-05,
920
+ "loss": 6.1295,
921
+ "step": 129
922
+ },
923
+ {
924
+ "epoch": 0.08170961659333752,
925
+ "grad_norm": 9.234803199768066,
926
+ "learning_rate": 5.16e-05,
927
+ "loss": 5.796,
928
+ "step": 130
929
+ },
930
+ {
931
+ "epoch": 0.08233815210559396,
932
+ "grad_norm": 8.689288139343262,
933
+ "learning_rate": 5.2000000000000004e-05,
934
+ "loss": 5.3704,
935
+ "step": 131
936
+ },
937
+ {
938
+ "epoch": 0.08296668761785041,
939
+ "grad_norm": 15.41921615600586,
940
+ "learning_rate": 5.2400000000000007e-05,
941
+ "loss": 6.0926,
942
+ "step": 132
943
+ },
944
+ {
945
+ "epoch": 0.08359522313010685,
946
+ "grad_norm": 8.419554710388184,
947
+ "learning_rate": 5.28e-05,
948
+ "loss": 5.8071,
949
+ "step": 133
950
+ },
951
+ {
952
+ "epoch": 0.0842237586423633,
953
+ "grad_norm": 8.644979476928711,
954
+ "learning_rate": 5.3200000000000006e-05,
955
+ "loss": 5.9138,
956
+ "step": 134
957
+ },
958
+ {
959
+ "epoch": 0.08485229415461974,
960
+ "grad_norm": 11.236026763916016,
961
+ "learning_rate": 5.360000000000001e-05,
962
+ "loss": 5.9092,
963
+ "step": 135
964
+ },
965
+ {
966
+ "epoch": 0.08548082966687617,
967
+ "grad_norm": 9.669437408447266,
968
+ "learning_rate": 5.4000000000000005e-05,
969
+ "loss": 5.3778,
970
+ "step": 136
971
+ },
972
+ {
973
+ "epoch": 0.08610936517913262,
974
+ "grad_norm": 10.624286651611328,
975
+ "learning_rate": 5.440000000000001e-05,
976
+ "loss": 5.4098,
977
+ "step": 137
978
+ },
979
+ {
980
+ "epoch": 0.08673790069138906,
981
+ "grad_norm": 8.831917762756348,
982
+ "learning_rate": 5.4800000000000004e-05,
983
+ "loss": 5.3806,
984
+ "step": 138
985
+ },
986
+ {
987
+ "epoch": 0.08736643620364551,
988
+ "grad_norm": 8.536581993103027,
989
+ "learning_rate": 5.520000000000001e-05,
990
+ "loss": 5.9237,
991
+ "step": 139
992
+ },
993
+ {
994
+ "epoch": 0.08799497171590195,
995
+ "grad_norm": 7.873721599578857,
996
+ "learning_rate": 5.560000000000001e-05,
997
+ "loss": 5.423,
998
+ "step": 140
999
+ },
1000
+ {
1001
+ "epoch": 0.08862350722815839,
1002
+ "grad_norm": 8.635188102722168,
1003
+ "learning_rate": 5.6000000000000006e-05,
1004
+ "loss": 5.6118,
1005
+ "step": 141
1006
+ },
1007
+ {
1008
+ "epoch": 0.08925204274041483,
1009
+ "grad_norm": 13.39542293548584,
1010
+ "learning_rate": 5.6399999999999995e-05,
1011
+ "loss": 5.2728,
1012
+ "step": 142
1013
+ },
1014
+ {
1015
+ "epoch": 0.08988057825267128,
1016
+ "grad_norm": 12.998862266540527,
1017
+ "learning_rate": 5.68e-05,
1018
+ "loss": 6.9434,
1019
+ "step": 143
1020
+ },
1021
+ {
1022
+ "epoch": 0.09050911376492772,
1023
+ "grad_norm": 8.149964332580566,
1024
+ "learning_rate": 5.72e-05,
1025
+ "loss": 5.3559,
1026
+ "step": 144
1027
+ },
1028
+ {
1029
+ "epoch": 0.09113764927718417,
1030
+ "grad_norm": 7.66946268081665,
1031
+ "learning_rate": 5.76e-05,
1032
+ "loss": 5.5603,
1033
+ "step": 145
1034
+ },
1035
+ {
1036
+ "epoch": 0.0917661847894406,
1037
+ "grad_norm": 9.277702331542969,
1038
+ "learning_rate": 5.8e-05,
1039
+ "loss": 4.9751,
1040
+ "step": 146
1041
+ },
1042
+ {
1043
+ "epoch": 0.09239472030169704,
1044
+ "grad_norm": 7.442458152770996,
1045
+ "learning_rate": 5.8399999999999997e-05,
1046
+ "loss": 5.1653,
1047
+ "step": 147
1048
+ },
1049
+ {
1050
+ "epoch": 0.09302325581395349,
1051
+ "grad_norm": 8.340120315551758,
1052
+ "learning_rate": 5.88e-05,
1053
+ "loss": 5.5422,
1054
+ "step": 148
1055
+ },
1056
+ {
1057
+ "epoch": 0.09365179132620993,
1058
+ "grad_norm": 6.774919033050537,
1059
+ "learning_rate": 5.92e-05,
1060
+ "loss": 5.0187,
1061
+ "step": 149
1062
+ },
1063
+ {
1064
+ "epoch": 0.09428032683846638,
1065
+ "grad_norm": 8.363201141357422,
1066
+ "learning_rate": 5.96e-05,
1067
+ "loss": 4.9803,
1068
+ "step": 150
1069
+ },
1070
+ {
1071
+ "epoch": 0.09490886235072282,
1072
+ "grad_norm": 7.182234764099121,
1073
+ "learning_rate": 6e-05,
1074
+ "loss": 5.2913,
1075
+ "step": 151
1076
+ },
1077
+ {
1078
+ "epoch": 0.09553739786297925,
1079
+ "grad_norm": 9.065616607666016,
1080
+ "learning_rate": 6.04e-05,
1081
+ "loss": 5.8604,
1082
+ "step": 152
1083
+ },
1084
+ {
1085
+ "epoch": 0.0961659333752357,
1086
+ "grad_norm": 7.823053359985352,
1087
+ "learning_rate": 6.08e-05,
1088
+ "loss": 5.7326,
1089
+ "step": 153
1090
+ },
1091
+ {
1092
+ "epoch": 0.09679446888749214,
1093
+ "grad_norm": 8.177785873413086,
1094
+ "learning_rate": 6.12e-05,
1095
+ "loss": 5.5663,
1096
+ "step": 154
1097
+ },
1098
+ {
1099
+ "epoch": 0.09742300439974859,
1100
+ "grad_norm": 8.24718952178955,
1101
+ "learning_rate": 6.16e-05,
1102
+ "loss": 5.5606,
1103
+ "step": 155
1104
+ },
1105
+ {
1106
+ "epoch": 0.09805153991200503,
1107
+ "grad_norm": 10.260727882385254,
1108
+ "learning_rate": 6.2e-05,
1109
+ "loss": 5.7043,
1110
+ "step": 156
1111
+ },
1112
+ {
1113
+ "epoch": 0.09868007542426147,
1114
+ "grad_norm": 11.80507755279541,
1115
+ "learning_rate": 6.24e-05,
1116
+ "loss": 6.0268,
1117
+ "step": 157
1118
+ },
1119
+ {
1120
+ "epoch": 0.09930861093651791,
1121
+ "grad_norm": 9.024588584899902,
1122
+ "learning_rate": 6.280000000000001e-05,
1123
+ "loss": 6.2249,
1124
+ "step": 158
1125
+ },
1126
+ {
1127
+ "epoch": 0.09993714644877436,
1128
+ "grad_norm": 6.814016342163086,
1129
+ "learning_rate": 6.32e-05,
1130
+ "loss": 5.0123,
1131
+ "step": 159
1132
+ },
1133
+ {
1134
+ "epoch": 0.1005656819610308,
1135
+ "grad_norm": 6.701868534088135,
1136
+ "learning_rate": 6.36e-05,
1137
+ "loss": 4.9993,
1138
+ "step": 160
1139
+ },
1140
+ {
1141
+ "epoch": 0.1005656819610308,
1142
+ "eval_loss": 5.605074882507324,
1143
+ "eval_runtime": 1565.1736,
1144
+ "eval_samples_per_second": 1.647,
1145
+ "eval_steps_per_second": 1.647,
1146
+ "step": 160
1147
+ }
1148
+ ],
1149
+ "logging_steps": 1,
1150
+ "max_steps": 1591,
1151
+ "num_input_tokens_seen": 0,
1152
+ "num_train_epochs": 1,
1153
+ "save_steps": 160,
1154
+ "stateful_callbacks": {
1155
+ "TrainerControl": {
1156
+ "args": {
1157
+ "should_epoch_stop": false,
1158
+ "should_evaluate": false,
1159
+ "should_log": false,
1160
+ "should_save": true,
1161
+ "should_training_stop": false
1162
+ },
1163
+ "attributes": {}
1164
+ }
1165
+ },
1166
+ "total_flos": 2.0460495771690598e+18,
1167
+ "train_batch_size": 2,
1168
+ "trial_name": null,
1169
+ "trial_params": null
1170
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bd0dbc47a9812516a7dc00a4bccf2e85152bb7b0be6caacda2e7ed6fd24ad7b
3
+ size 8824
checkpoint-160/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-160/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)