File size: 1,555 Bytes
59231d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---

library_name: transformers
license: mit
base_model: bert-base-german-cased
tags:
- generated_from_trainer
model-index:
- name: brand_ner_model
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# brand_ner_model

This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0132
- Brand: {'precision': 0.9935705381940648, 'recall': 0.9933967421012354, 'f1': 0.99348363254685, 'number': 45735}
- Overall Precision: 0.9936
- Overall Recall: 0.9934
- Overall F1: 0.9935
- Overall Accuracy: 0.9974

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.52.4
- Pytorch 2.7.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1