sighmon's picture
Upload folder using huggingface_hub
119b635 verified
[2025-03-01 04:23:12,793][00508] Saving configuration to /content/train_dir/default_experiment/config.json...
[2025-03-01 04:23:12,795][00508] Rollout worker 0 uses device cpu
[2025-03-01 04:23:12,796][00508] Rollout worker 1 uses device cpu
[2025-03-01 04:23:12,796][00508] Rollout worker 2 uses device cpu
[2025-03-01 04:23:12,797][00508] Rollout worker 3 uses device cpu
[2025-03-01 04:23:12,798][00508] Rollout worker 4 uses device cpu
[2025-03-01 04:23:12,799][00508] Rollout worker 5 uses device cpu
[2025-03-01 04:23:12,799][00508] Rollout worker 6 uses device cpu
[2025-03-01 04:23:12,800][00508] Rollout worker 7 uses device cpu
[2025-03-01 04:23:12,946][00508] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-03-01 04:23:12,947][00508] InferenceWorker_p0-w0: min num requests: 2
[2025-03-01 04:23:12,981][00508] Starting all processes...
[2025-03-01 04:23:12,982][00508] Starting process learner_proc0
[2025-03-01 04:23:13,167][00508] Starting all processes...
[2025-03-01 04:23:13,176][00508] Starting process inference_proc0-0
[2025-03-01 04:23:13,176][00508] Starting process rollout_proc0
[2025-03-01 04:23:13,177][00508] Starting process rollout_proc1
[2025-03-01 04:23:13,178][00508] Starting process rollout_proc2
[2025-03-01 04:23:13,179][00508] Starting process rollout_proc3
[2025-03-01 04:23:13,179][00508] Starting process rollout_proc4
[2025-03-01 04:23:13,179][00508] Starting process rollout_proc5
[2025-03-01 04:23:13,179][00508] Starting process rollout_proc6
[2025-03-01 04:23:13,179][00508] Starting process rollout_proc7
[2025-03-01 04:23:29,647][05724] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-03-01 04:23:29,648][05724] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2025-03-01 04:23:29,683][05738] Worker 0 uses CPU cores [0]
[2025-03-01 04:23:29,700][05739] Worker 1 uses CPU cores [1]
[2025-03-01 04:23:29,738][05724] Num visible devices: 1
[2025-03-01 04:23:29,784][05724] Starting seed is not provided
[2025-03-01 04:23:29,786][05724] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-03-01 04:23:29,786][05724] Initializing actor-critic model on device cuda:0
[2025-03-01 04:23:29,787][05724] RunningMeanStd input shape: (3, 72, 128)
[2025-03-01 04:23:29,790][05724] RunningMeanStd input shape: (1,)
[2025-03-01 04:23:29,835][05724] ConvEncoder: input_channels=3
[2025-03-01 04:23:30,125][05741] Worker 4 uses CPU cores [0]
[2025-03-01 04:23:30,187][05743] Worker 5 uses CPU cores [1]
[2025-03-01 04:23:30,229][05740] Worker 2 uses CPU cores [0]
[2025-03-01 04:23:30,259][05745] Worker 7 uses CPU cores [1]
[2025-03-01 04:23:30,275][05742] Worker 3 uses CPU cores [1]
[2025-03-01 04:23:30,296][05737] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-03-01 04:23:30,297][05737] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2025-03-01 04:23:30,321][05737] Num visible devices: 1
[2025-03-01 04:23:30,384][05744] Worker 6 uses CPU cores [0]
[2025-03-01 04:23:30,406][05724] Conv encoder output size: 512
[2025-03-01 04:23:30,406][05724] Policy head output size: 512
[2025-03-01 04:23:30,461][05724] Created Actor Critic model with architecture:
[2025-03-01 04:23:30,461][05724] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2025-03-01 04:23:30,705][05724] Using optimizer <class 'torch.optim.adam.Adam'>
[2025-03-01 04:23:32,939][00508] Heartbeat connected on Batcher_0
[2025-03-01 04:23:32,947][00508] Heartbeat connected on InferenceWorker_p0-w0
[2025-03-01 04:23:32,955][00508] Heartbeat connected on RolloutWorker_w0
[2025-03-01 04:23:32,958][00508] Heartbeat connected on RolloutWorker_w1
[2025-03-01 04:23:32,961][00508] Heartbeat connected on RolloutWorker_w2
[2025-03-01 04:23:32,965][00508] Heartbeat connected on RolloutWorker_w3
[2025-03-01 04:23:32,971][00508] Heartbeat connected on RolloutWorker_w4
[2025-03-01 04:23:32,973][00508] Heartbeat connected on RolloutWorker_w5
[2025-03-01 04:23:32,977][00508] Heartbeat connected on RolloutWorker_w6
[2025-03-01 04:23:32,985][00508] Heartbeat connected on RolloutWorker_w7
[2025-03-01 04:23:34,907][05724] No checkpoints found
[2025-03-01 04:23:34,907][05724] Did not load from checkpoint, starting from scratch!
[2025-03-01 04:23:34,907][05724] Initialized policy 0 weights for model version 0
[2025-03-01 04:23:34,910][05724] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-03-01 04:23:34,917][05724] LearnerWorker_p0 finished initialization!
[2025-03-01 04:23:34,925][00508] Heartbeat connected on LearnerWorker_p0
[2025-03-01 04:23:35,046][05737] RunningMeanStd input shape: (3, 72, 128)
[2025-03-01 04:23:35,048][05737] RunningMeanStd input shape: (1,)
[2025-03-01 04:23:35,059][05737] ConvEncoder: input_channels=3
[2025-03-01 04:23:35,202][05737] Conv encoder output size: 512
[2025-03-01 04:23:35,202][05737] Policy head output size: 512
[2025-03-01 04:23:35,260][00508] Inference worker 0-0 is ready!
[2025-03-01 04:23:35,263][00508] All inference workers are ready! Signal rollout workers to start!
[2025-03-01 04:23:35,642][05743] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,691][05739] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,714][05742] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,738][05745] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,835][05741] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,861][05740] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,930][05744] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:35,967][05738] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:23:36,945][05741] Decorrelating experience for 0 frames...
[2025-03-01 04:23:37,432][05742] Decorrelating experience for 0 frames...
[2025-03-01 04:23:37,459][05743] Decorrelating experience for 0 frames...
[2025-03-01 04:23:37,446][05739] Decorrelating experience for 0 frames...
[2025-03-01 04:23:37,463][05745] Decorrelating experience for 0 frames...
[2025-03-01 04:23:37,975][05741] Decorrelating experience for 32 frames...
[2025-03-01 04:23:37,998][05738] Decorrelating experience for 0 frames...
[2025-03-01 04:23:38,067][00508] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-03-01 04:23:39,102][05742] Decorrelating experience for 32 frames...
[2025-03-01 04:23:39,113][05743] Decorrelating experience for 32 frames...
[2025-03-01 04:23:39,138][05745] Decorrelating experience for 32 frames...
[2025-03-01 04:23:39,150][05739] Decorrelating experience for 32 frames...
[2025-03-01 04:23:39,180][05744] Decorrelating experience for 0 frames...
[2025-03-01 04:23:39,206][05740] Decorrelating experience for 0 frames...
[2025-03-01 04:23:39,720][05738] Decorrelating experience for 32 frames...
[2025-03-01 04:23:40,899][05741] Decorrelating experience for 64 frames...
[2025-03-01 04:23:40,953][05744] Decorrelating experience for 32 frames...
[2025-03-01 04:23:41,389][05740] Decorrelating experience for 32 frames...
[2025-03-01 04:23:42,058][05742] Decorrelating experience for 64 frames...
[2025-03-01 04:23:42,084][05743] Decorrelating experience for 64 frames...
[2025-03-01 04:23:42,316][05741] Decorrelating experience for 96 frames...
[2025-03-01 04:23:42,912][05745] Decorrelating experience for 64 frames...
[2025-03-01 04:23:43,067][00508] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-03-01 04:23:43,469][05740] Decorrelating experience for 64 frames...
[2025-03-01 04:23:43,993][05739] Decorrelating experience for 64 frames...
[2025-03-01 04:23:44,086][05744] Decorrelating experience for 64 frames...
[2025-03-01 04:23:44,155][05742] Decorrelating experience for 96 frames...
[2025-03-01 04:23:44,201][05743] Decorrelating experience for 96 frames...
[2025-03-01 04:23:45,040][05745] Decorrelating experience for 96 frames...
[2025-03-01 04:23:45,421][05740] Decorrelating experience for 96 frames...
[2025-03-01 04:23:46,258][05738] Decorrelating experience for 64 frames...
[2025-03-01 04:23:46,590][05739] Decorrelating experience for 96 frames...
[2025-03-01 04:23:48,073][00508] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 165.5. Samples: 1656. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-03-01 04:23:48,076][00508] Avg episode reward: [(0, '2.894')]
[2025-03-01 04:23:48,297][05744] Decorrelating experience for 96 frames...
[2025-03-01 04:23:48,731][05724] Signal inference workers to stop experience collection...
[2025-03-01 04:23:48,736][05737] InferenceWorker_p0-w0: stopping experience collection
[2025-03-01 04:23:48,872][05738] Decorrelating experience for 96 frames...
[2025-03-01 04:23:50,228][05724] Signal inference workers to resume experience collection...
[2025-03-01 04:23:50,229][05737] InferenceWorker_p0-w0: resuming experience collection
[2025-03-01 04:23:53,068][00508] Fps is (10 sec: 1638.2, 60 sec: 1092.2, 300 sec: 1092.2). Total num frames: 16384. Throughput: 0: 168.8. Samples: 2532. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:23:53,070][00508] Avg episode reward: [(0, '3.474')]
[2025-03-01 04:23:58,068][00508] Fps is (10 sec: 3278.5, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 32768. Throughput: 0: 365.8. Samples: 7316. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:23:58,069][00508] Avg episode reward: [(0, '3.811')]
[2025-03-01 04:23:59,788][05737] Updated weights for policy 0, policy_version 10 (0.0093)
[2025-03-01 04:24:03,067][00508] Fps is (10 sec: 3686.8, 60 sec: 2129.9, 300 sec: 2129.9). Total num frames: 53248. Throughput: 0: 539.3. Samples: 13482. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:24:03,069][00508] Avg episode reward: [(0, '4.342')]
[2025-03-01 04:24:08,068][00508] Fps is (10 sec: 3686.3, 60 sec: 2321.0, 300 sec: 2321.0). Total num frames: 69632. Throughput: 0: 559.1. Samples: 16772. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:24:08,069][00508] Avg episode reward: [(0, '4.451')]
[2025-03-01 04:24:11,291][05737] Updated weights for policy 0, policy_version 20 (0.0026)
[2025-03-01 04:24:13,067][00508] Fps is (10 sec: 3276.8, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 86016. Throughput: 0: 601.1. Samples: 21040. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:24:13,072][00508] Avg episode reward: [(0, '4.412')]
[2025-03-01 04:24:18,067][00508] Fps is (10 sec: 3686.6, 60 sec: 2662.4, 300 sec: 2662.4). Total num frames: 106496. Throughput: 0: 683.2. Samples: 27328. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:24:18,072][00508] Avg episode reward: [(0, '4.442')]
[2025-03-01 04:24:18,078][05724] Saving new best policy, reward=4.442!
[2025-03-01 04:24:21,158][05737] Updated weights for policy 0, policy_version 30 (0.0031)
[2025-03-01 04:24:23,069][00508] Fps is (10 sec: 4095.4, 60 sec: 2821.6, 300 sec: 2821.6). Total num frames: 126976. Throughput: 0: 677.4. Samples: 30486. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:24:23,070][00508] Avg episode reward: [(0, '4.416')]
[2025-03-01 04:24:28,067][00508] Fps is (10 sec: 3686.4, 60 sec: 2867.2, 300 sec: 2867.2). Total num frames: 143360. Throughput: 0: 784.2. Samples: 35290. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:24:28,072][00508] Avg episode reward: [(0, '4.458')]
[2025-03-01 04:24:28,078][05724] Saving new best policy, reward=4.458!
[2025-03-01 04:24:32,070][05737] Updated weights for policy 0, policy_version 40 (0.0020)
[2025-03-01 04:24:33,067][00508] Fps is (10 sec: 3687.0, 60 sec: 2978.9, 300 sec: 2978.9). Total num frames: 163840. Throughput: 0: 889.8. Samples: 41694. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:24:33,077][00508] Avg episode reward: [(0, '4.369')]
[2025-03-01 04:24:38,068][00508] Fps is (10 sec: 4095.9, 60 sec: 3072.0, 300 sec: 3072.0). Total num frames: 184320. Throughput: 0: 942.6. Samples: 44948. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:24:38,069][00508] Avg episode reward: [(0, '4.380')]
[2025-03-01 04:24:43,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3345.1, 300 sec: 3087.8). Total num frames: 200704. Throughput: 0: 936.1. Samples: 49440. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:24:43,069][00508] Avg episode reward: [(0, '4.432')]
[2025-03-01 04:24:43,553][05737] Updated weights for policy 0, policy_version 50 (0.0026)
[2025-03-01 04:24:48,067][00508] Fps is (10 sec: 3686.5, 60 sec: 3686.7, 300 sec: 3159.8). Total num frames: 221184. Throughput: 0: 943.8. Samples: 55952. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:24:48,072][00508] Avg episode reward: [(0, '4.473')]
[2025-03-01 04:24:48,079][05724] Saving new best policy, reward=4.473!
[2025-03-01 04:24:53,068][00508] Fps is (10 sec: 4095.8, 60 sec: 3754.7, 300 sec: 3222.2). Total num frames: 241664. Throughput: 0: 942.7. Samples: 59192. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:24:53,074][00508] Avg episode reward: [(0, '4.357')]
[2025-03-01 04:24:53,857][05737] Updated weights for policy 0, policy_version 60 (0.0015)
[2025-03-01 04:24:58,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3225.6). Total num frames: 258048. Throughput: 0: 949.9. Samples: 63784. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:24:58,070][00508] Avg episode reward: [(0, '4.300')]
[2025-03-01 04:25:03,067][00508] Fps is (10 sec: 4096.2, 60 sec: 3822.9, 300 sec: 3325.0). Total num frames: 282624. Throughput: 0: 958.0. Samples: 70436. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:25:03,072][00508] Avg episode reward: [(0, '4.538')]
[2025-03-01 04:25:03,076][05724] Saving new best policy, reward=4.538!
[2025-03-01 04:25:03,905][05737] Updated weights for policy 0, policy_version 70 (0.0024)
[2025-03-01 04:25:08,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3823.0, 300 sec: 3322.3). Total num frames: 299008. Throughput: 0: 960.3. Samples: 73698. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:25:08,070][00508] Avg episode reward: [(0, '4.790')]
[2025-03-01 04:25:08,077][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000073_299008.pth...
[2025-03-01 04:25:08,278][05724] Saving new best policy, reward=4.790!
[2025-03-01 04:25:13,067][00508] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3319.9). Total num frames: 315392. Throughput: 0: 949.6. Samples: 78020. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:25:13,072][00508] Avg episode reward: [(0, '4.798')]
[2025-03-01 04:25:13,075][05724] Saving new best policy, reward=4.798!
[2025-03-01 04:25:15,370][05737] Updated weights for policy 0, policy_version 80 (0.0032)
[2025-03-01 04:25:18,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3358.7). Total num frames: 335872. Throughput: 0: 952.2. Samples: 84544. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:25:18,072][00508] Avg episode reward: [(0, '4.786')]
[2025-03-01 04:25:23,067][00508] Fps is (10 sec: 4096.1, 60 sec: 3823.0, 300 sec: 3393.8). Total num frames: 356352. Throughput: 0: 954.3. Samples: 87890. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:25:23,074][00508] Avg episode reward: [(0, '4.601')]
[2025-03-01 04:25:26,548][05737] Updated weights for policy 0, policy_version 90 (0.0015)
[2025-03-01 04:25:28,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3388.5). Total num frames: 372736. Throughput: 0: 956.6. Samples: 92486. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:25:28,069][00508] Avg episode reward: [(0, '4.828')]
[2025-03-01 04:25:28,073][05724] Saving new best policy, reward=4.828!
[2025-03-01 04:25:33,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3419.3). Total num frames: 393216. Throughput: 0: 957.0. Samples: 99016. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:25:33,068][00508] Avg episode reward: [(0, '4.996')]
[2025-03-01 04:25:33,086][05724] Saving new best policy, reward=4.996!
[2025-03-01 04:25:36,759][05737] Updated weights for policy 0, policy_version 100 (0.0031)
[2025-03-01 04:25:38,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3413.3). Total num frames: 409600. Throughput: 0: 951.5. Samples: 102008. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:25:38,070][00508] Avg episode reward: [(0, '4.924')]
[2025-03-01 04:25:43,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3440.6). Total num frames: 430080. Throughput: 0: 950.0. Samples: 106534. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:25:43,071][00508] Avg episode reward: [(0, '4.777')]
[2025-03-01 04:25:47,396][05737] Updated weights for policy 0, policy_version 110 (0.0022)
[2025-03-01 04:25:48,068][00508] Fps is (10 sec: 4095.9, 60 sec: 3822.9, 300 sec: 3465.8). Total num frames: 450560. Throughput: 0: 948.1. Samples: 113102. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:25:48,069][00508] Avg episode reward: [(0, '4.676')]
[2025-03-01 04:25:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3458.8). Total num frames: 466944. Throughput: 0: 937.8. Samples: 115900. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:25:53,073][00508] Avg episode reward: [(0, '4.992')]
[2025-03-01 04:25:58,067][00508] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3481.6). Total num frames: 487424. Throughput: 0: 949.6. Samples: 120752. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:25:58,068][00508] Avg episode reward: [(0, '4.867')]
[2025-03-01 04:25:58,831][05737] Updated weights for policy 0, policy_version 120 (0.0025)
[2025-03-01 04:26:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3502.8). Total num frames: 507904. Throughput: 0: 949.2. Samples: 127258. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:26:03,070][00508] Avg episode reward: [(0, '4.815')]
[2025-03-01 04:26:08,069][00508] Fps is (10 sec: 3685.8, 60 sec: 3754.6, 300 sec: 3495.2). Total num frames: 524288. Throughput: 0: 936.1. Samples: 130018. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:26:08,073][00508] Avg episode reward: [(0, '5.220')]
[2025-03-01 04:26:08,081][05724] Saving new best policy, reward=5.220!
[2025-03-01 04:26:10,050][05737] Updated weights for policy 0, policy_version 130 (0.0029)
[2025-03-01 04:26:13,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3514.6). Total num frames: 544768. Throughput: 0: 942.1. Samples: 134882. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:26:13,071][00508] Avg episode reward: [(0, '5.429')]
[2025-03-01 04:26:13,074][05724] Saving new best policy, reward=5.429!
[2025-03-01 04:26:18,067][00508] Fps is (10 sec: 4096.6, 60 sec: 3822.9, 300 sec: 3532.8). Total num frames: 565248. Throughput: 0: 942.0. Samples: 141406. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:26:18,071][00508] Avg episode reward: [(0, '5.432')]
[2025-03-01 04:26:18,082][05724] Saving new best policy, reward=5.432!
[2025-03-01 04:26:20,477][05737] Updated weights for policy 0, policy_version 140 (0.0017)
[2025-03-01 04:26:23,067][00508] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3500.2). Total num frames: 577536. Throughput: 0: 930.8. Samples: 143892. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:26:23,071][00508] Avg episode reward: [(0, '5.254')]
[2025-03-01 04:26:28,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3541.8). Total num frames: 602112. Throughput: 0: 950.9. Samples: 149326. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:26:28,076][00508] Avg episode reward: [(0, '5.321')]
[2025-03-01 04:26:30,840][05737] Updated weights for policy 0, policy_version 150 (0.0013)
[2025-03-01 04:26:33,067][00508] Fps is (10 sec: 4505.5, 60 sec: 3822.9, 300 sec: 3557.7). Total num frames: 622592. Throughput: 0: 951.0. Samples: 155898. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:26:33,071][00508] Avg episode reward: [(0, '5.250')]
[2025-03-01 04:26:38,068][00508] Fps is (10 sec: 3276.7, 60 sec: 3754.6, 300 sec: 3527.1). Total num frames: 634880. Throughput: 0: 942.3. Samples: 158304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:26:38,071][00508] Avg episode reward: [(0, '5.086')]
[2025-03-01 04:26:41,822][05737] Updated weights for policy 0, policy_version 160 (0.0022)
[2025-03-01 04:26:43,067][00508] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3564.6). Total num frames: 659456. Throughput: 0: 955.6. Samples: 163754. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:26:43,072][00508] Avg episode reward: [(0, '5.287')]
[2025-03-01 04:26:48,067][00508] Fps is (10 sec: 4505.8, 60 sec: 3823.0, 300 sec: 3578.6). Total num frames: 679936. Throughput: 0: 958.6. Samples: 170396. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:26:48,072][00508] Avg episode reward: [(0, '5.600')]
[2025-03-01 04:26:48,080][05724] Saving new best policy, reward=5.600!
[2025-03-01 04:26:52,905][05737] Updated weights for policy 0, policy_version 170 (0.0016)
[2025-03-01 04:26:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3570.9). Total num frames: 696320. Throughput: 0: 945.0. Samples: 172540. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:26:53,072][00508] Avg episode reward: [(0, '6.171')]
[2025-03-01 04:26:53,074][05724] Saving new best policy, reward=6.171!
[2025-03-01 04:26:58,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3584.0). Total num frames: 716800. Throughput: 0: 964.2. Samples: 178270. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:26:58,070][00508] Avg episode reward: [(0, '6.332')]
[2025-03-01 04:26:58,077][05724] Saving new best policy, reward=6.332!
[2025-03-01 04:27:02,253][05737] Updated weights for policy 0, policy_version 180 (0.0014)
[2025-03-01 04:27:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3596.5). Total num frames: 737280. Throughput: 0: 968.2. Samples: 184974. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:27:03,069][00508] Avg episode reward: [(0, '6.083')]
[2025-03-01 04:27:08,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3823.0, 300 sec: 3588.9). Total num frames: 753664. Throughput: 0: 958.9. Samples: 187042. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:27:08,071][00508] Avg episode reward: [(0, '6.078')]
[2025-03-01 04:27:08,078][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000184_753664.pth...
[2025-03-01 04:27:13,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3600.7). Total num frames: 774144. Throughput: 0: 969.7. Samples: 192962. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:27:13,070][00508] Avg episode reward: [(0, '6.196')]
[2025-03-01 04:27:13,200][05737] Updated weights for policy 0, policy_version 190 (0.0017)
[2025-03-01 04:27:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3611.9). Total num frames: 794624. Throughput: 0: 964.0. Samples: 199276. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:27:18,070][00508] Avg episode reward: [(0, '6.608')]
[2025-03-01 04:27:18,076][05724] Saving new best policy, reward=6.608!
[2025-03-01 04:27:23,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3604.5). Total num frames: 811008. Throughput: 0: 953.3. Samples: 201204. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:27:23,071][00508] Avg episode reward: [(0, '6.958')]
[2025-03-01 04:27:23,074][05724] Saving new best policy, reward=6.958!
[2025-03-01 04:27:24,317][05737] Updated weights for policy 0, policy_version 200 (0.0021)
[2025-03-01 04:27:28,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3633.0). Total num frames: 835584. Throughput: 0: 974.7. Samples: 207614. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:27:28,071][00508] Avg episode reward: [(0, '6.902')]
[2025-03-01 04:27:33,067][00508] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3642.8). Total num frames: 856064. Throughput: 0: 968.0. Samples: 213954. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:27:33,068][00508] Avg episode reward: [(0, '7.152')]
[2025-03-01 04:27:33,070][05724] Saving new best policy, reward=7.152!
[2025-03-01 04:27:34,608][05737] Updated weights for policy 0, policy_version 210 (0.0020)
[2025-03-01 04:27:38,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3635.2). Total num frames: 872448. Throughput: 0: 965.2. Samples: 215976. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:27:38,069][00508] Avg episode reward: [(0, '7.182')]
[2025-03-01 04:27:38,075][05724] Saving new best policy, reward=7.182!
[2025-03-01 04:27:43,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3661.3). Total num frames: 897024. Throughput: 0: 992.0. Samples: 222912. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:27:43,070][00508] Avg episode reward: [(0, '6.982')]
[2025-03-01 04:27:43,905][05737] Updated weights for policy 0, policy_version 220 (0.0018)
[2025-03-01 04:27:48,074][00508] Fps is (10 sec: 4093.4, 60 sec: 3890.8, 300 sec: 3653.5). Total num frames: 913408. Throughput: 0: 976.0. Samples: 228900. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:27:48,079][00508] Avg episode reward: [(0, '7.029')]
[2025-03-01 04:27:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3662.3). Total num frames: 933888. Throughput: 0: 984.0. Samples: 231320. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:27:53,069][00508] Avg episode reward: [(0, '7.802')]
[2025-03-01 04:27:53,072][05724] Saving new best policy, reward=7.802!
[2025-03-01 04:27:54,461][05737] Updated weights for policy 0, policy_version 230 (0.0030)
[2025-03-01 04:27:58,067][00508] Fps is (10 sec: 4508.5, 60 sec: 4027.7, 300 sec: 3686.4). Total num frames: 958464. Throughput: 0: 1004.7. Samples: 238174. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:27:58,072][00508] Avg episode reward: [(0, '8.128')]
[2025-03-01 04:27:58,081][05724] Saving new best policy, reward=8.128!
[2025-03-01 04:28:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3678.7). Total num frames: 974848. Throughput: 0: 991.4. Samples: 243890. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:28:03,069][00508] Avg episode reward: [(0, '7.599')]
[2025-03-01 04:28:05,146][05737] Updated weights for policy 0, policy_version 240 (0.0015)
[2025-03-01 04:28:08,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3686.4). Total num frames: 995328. Throughput: 0: 1006.3. Samples: 246486. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:28:08,068][00508] Avg episode reward: [(0, '7.799')]
[2025-03-01 04:28:13,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3693.8). Total num frames: 1015808. Throughput: 0: 1016.0. Samples: 253336. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:28:13,069][00508] Avg episode reward: [(0, '7.706')]
[2025-03-01 04:28:14,638][05737] Updated weights for policy 0, policy_version 250 (0.0035)
[2025-03-01 04:28:18,068][00508] Fps is (10 sec: 3686.1, 60 sec: 3959.4, 300 sec: 3686.4). Total num frames: 1032192. Throughput: 0: 990.6. Samples: 258534. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:28:18,071][00508] Avg episode reward: [(0, '7.806')]
[2025-03-01 04:28:23,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3693.6). Total num frames: 1052672. Throughput: 0: 1013.8. Samples: 261598. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:28:23,071][00508] Avg episode reward: [(0, '7.996')]
[2025-03-01 04:28:24,973][05737] Updated weights for policy 0, policy_version 260 (0.0023)
[2025-03-01 04:28:28,067][00508] Fps is (10 sec: 4506.0, 60 sec: 4027.7, 300 sec: 3714.6). Total num frames: 1077248. Throughput: 0: 1012.1. Samples: 268456. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:28:28,073][00508] Avg episode reward: [(0, '8.508')]
[2025-03-01 04:28:28,080][05724] Saving new best policy, reward=8.508!
[2025-03-01 04:28:33,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3707.2). Total num frames: 1093632. Throughput: 0: 993.6. Samples: 273606. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:28:33,069][00508] Avg episode reward: [(0, '9.202')]
[2025-03-01 04:28:33,070][05724] Saving new best policy, reward=9.202!
[2025-03-01 04:28:35,689][05737] Updated weights for policy 0, policy_version 270 (0.0031)
[2025-03-01 04:28:38,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3776.7). Total num frames: 1114112. Throughput: 0: 1009.9. Samples: 276764. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2025-03-01 04:28:38,069][00508] Avg episode reward: [(0, '10.022')]
[2025-03-01 04:28:38,078][05724] Saving new best policy, reward=10.022!
[2025-03-01 04:28:43,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3860.0). Total num frames: 1138688. Throughput: 0: 1009.2. Samples: 283588. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:28:43,071][00508] Avg episode reward: [(0, '10.117')]
[2025-03-01 04:28:43,076][05724] Saving new best policy, reward=10.117!
[2025-03-01 04:28:45,844][05737] Updated weights for policy 0, policy_version 280 (0.0030)
[2025-03-01 04:28:48,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.9, 300 sec: 3846.1). Total num frames: 1150976. Throughput: 0: 988.5. Samples: 288374. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:28:48,068][00508] Avg episode reward: [(0, '10.455')]
[2025-03-01 04:28:48,078][05724] Saving new best policy, reward=10.455!
[2025-03-01 04:28:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3873.8). Total num frames: 1175552. Throughput: 0: 1005.3. Samples: 291726. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:28:53,069][00508] Avg episode reward: [(0, '10.315')]
[2025-03-01 04:28:55,301][05737] Updated weights for policy 0, policy_version 290 (0.0025)
[2025-03-01 04:28:58,068][00508] Fps is (10 sec: 4505.5, 60 sec: 3959.4, 300 sec: 3873.8). Total num frames: 1196032. Throughput: 0: 1010.0. Samples: 298788. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:28:58,075][00508] Avg episode reward: [(0, '9.691')]
[2025-03-01 04:29:03,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3873.9). Total num frames: 1212416. Throughput: 0: 1003.2. Samples: 303678. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:29:03,069][00508] Avg episode reward: [(0, '9.256')]
[2025-03-01 04:29:05,590][05737] Updated weights for policy 0, policy_version 300 (0.0015)
[2025-03-01 04:29:08,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 1236992. Throughput: 0: 1015.7. Samples: 307304. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:29:08,069][00508] Avg episode reward: [(0, '9.802')]
[2025-03-01 04:29:08,078][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000302_1236992.pth...
[2025-03-01 04:29:08,209][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000073_299008.pth
[2025-03-01 04:29:13,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 1257472. Throughput: 0: 1019.4. Samples: 314330. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:29:13,072][00508] Avg episode reward: [(0, '10.150')]
[2025-03-01 04:29:16,263][05737] Updated weights for policy 0, policy_version 310 (0.0025)
[2025-03-01 04:29:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.1, 300 sec: 3901.6). Total num frames: 1277952. Throughput: 0: 1011.6. Samples: 319130. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:29:18,072][00508] Avg episode reward: [(0, '10.540')]
[2025-03-01 04:29:18,079][05724] Saving new best policy, reward=10.540!
[2025-03-01 04:29:23,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3915.5). Total num frames: 1298432. Throughput: 0: 1019.9. Samples: 322658. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:29:23,072][00508] Avg episode reward: [(0, '10.997')]
[2025-03-01 04:29:23,077][05724] Saving new best policy, reward=10.997!
[2025-03-01 04:29:25,189][05737] Updated weights for policy 0, policy_version 320 (0.0015)
[2025-03-01 04:29:28,070][00508] Fps is (10 sec: 4095.0, 60 sec: 4027.6, 300 sec: 3915.5). Total num frames: 1318912. Throughput: 0: 1022.6. Samples: 329608. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:29:28,072][00508] Avg episode reward: [(0, '12.605')]
[2025-03-01 04:29:28,079][05724] Saving new best policy, reward=12.605!
[2025-03-01 04:29:33,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3915.5). Total num frames: 1339392. Throughput: 0: 1029.3. Samples: 334692. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:29:33,072][00508] Avg episode reward: [(0, '13.079')]
[2025-03-01 04:29:33,076][05724] Saving new best policy, reward=13.079!
[2025-03-01 04:29:35,722][05737] Updated weights for policy 0, policy_version 330 (0.0018)
[2025-03-01 04:29:38,067][00508] Fps is (10 sec: 4097.0, 60 sec: 4096.0, 300 sec: 3929.4). Total num frames: 1359872. Throughput: 0: 1031.8. Samples: 338156. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:29:38,072][00508] Avg episode reward: [(0, '14.008')]
[2025-03-01 04:29:38,079][05724] Saving new best policy, reward=14.008!
[2025-03-01 04:29:43,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 1380352. Throughput: 0: 1024.0. Samples: 344866. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:29:43,070][00508] Avg episode reward: [(0, '15.123')]
[2025-03-01 04:29:43,073][05724] Saving new best policy, reward=15.123!
[2025-03-01 04:29:46,128][05737] Updated weights for policy 0, policy_version 340 (0.0036)
[2025-03-01 04:29:48,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3929.4). Total num frames: 1400832. Throughput: 0: 1028.2. Samples: 349948. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:29:48,072][00508] Avg episode reward: [(0, '14.559')]
[2025-03-01 04:29:53,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3943.3). Total num frames: 1421312. Throughput: 0: 1024.8. Samples: 353418. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:29:53,069][00508] Avg episode reward: [(0, '15.047')]
[2025-03-01 04:29:55,015][05737] Updated weights for policy 0, policy_version 350 (0.0019)
[2025-03-01 04:29:58,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3929.4). Total num frames: 1441792. Throughput: 0: 1017.8. Samples: 360132. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:29:58,070][00508] Avg episode reward: [(0, '15.857')]
[2025-03-01 04:29:58,078][05724] Saving new best policy, reward=15.857!
[2025-03-01 04:30:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3943.3). Total num frames: 1462272. Throughput: 0: 1031.6. Samples: 365554. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:30:03,068][00508] Avg episode reward: [(0, '14.916')]
[2025-03-01 04:30:05,376][05737] Updated weights for policy 0, policy_version 360 (0.0018)
[2025-03-01 04:30:08,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 3971.0). Total num frames: 1486848. Throughput: 0: 1032.9. Samples: 369140. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:30:08,072][00508] Avg episode reward: [(0, '14.484')]
[2025-03-01 04:30:13,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3957.2). Total num frames: 1503232. Throughput: 0: 1019.2. Samples: 375470. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:30:13,070][00508] Avg episode reward: [(0, '14.096')]
[2025-03-01 04:30:15,863][05737] Updated weights for policy 0, policy_version 370 (0.0020)
[2025-03-01 04:30:18,067][00508] Fps is (10 sec: 3686.3, 60 sec: 4096.0, 300 sec: 3957.1). Total num frames: 1523712. Throughput: 0: 1031.9. Samples: 381126. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:30:18,070][00508] Avg episode reward: [(0, '13.525')]
[2025-03-01 04:30:23,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 3984.9). Total num frames: 1548288. Throughput: 0: 1033.9. Samples: 384682. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:30:23,072][00508] Avg episode reward: [(0, '13.308')]
[2025-03-01 04:30:24,731][05737] Updated weights for policy 0, policy_version 380 (0.0014)
[2025-03-01 04:30:28,070][00508] Fps is (10 sec: 4095.1, 60 sec: 4096.0, 300 sec: 3971.0). Total num frames: 1564672. Throughput: 0: 1017.9. Samples: 390674. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:30:28,073][00508] Avg episode reward: [(0, '13.791')]
[2025-03-01 04:30:33,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 3984.9). Total num frames: 1585152. Throughput: 0: 1039.1. Samples: 396708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:30:33,068][00508] Avg episode reward: [(0, '15.537')]
[2025-03-01 04:30:35,246][05737] Updated weights for policy 0, policy_version 390 (0.0025)
[2025-03-01 04:30:38,067][00508] Fps is (10 sec: 4506.7, 60 sec: 4164.3, 300 sec: 3998.8). Total num frames: 1609728. Throughput: 0: 1037.0. Samples: 400084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:30:38,072][00508] Avg episode reward: [(0, '16.562')]
[2025-03-01 04:30:38,079][05724] Saving new best policy, reward=16.562!
[2025-03-01 04:30:43,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3971.0). Total num frames: 1622016. Throughput: 0: 1011.2. Samples: 405638. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:30:43,069][00508] Avg episode reward: [(0, '16.245')]
[2025-03-01 04:30:45,974][05737] Updated weights for policy 0, policy_version 400 (0.0014)
[2025-03-01 04:30:48,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 3998.8). Total num frames: 1646592. Throughput: 0: 1025.7. Samples: 411712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:30:48,069][00508] Avg episode reward: [(0, '16.897')]
[2025-03-01 04:30:48,078][05724] Saving new best policy, reward=16.897!
[2025-03-01 04:30:53,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4096.0, 300 sec: 3998.8). Total num frames: 1667072. Throughput: 0: 1022.8. Samples: 415166. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:30:53,069][00508] Avg episode reward: [(0, '16.707')]
[2025-03-01 04:30:56,097][05737] Updated weights for policy 0, policy_version 410 (0.0020)
[2025-03-01 04:30:58,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3984.9). Total num frames: 1683456. Throughput: 0: 1000.9. Samples: 420510. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:30:58,071][00508] Avg episode reward: [(0, '16.571')]
[2025-03-01 04:31:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4012.7). Total num frames: 1708032. Throughput: 0: 1020.8. Samples: 427062. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:03,072][00508] Avg episode reward: [(0, '17.374')]
[2025-03-01 04:31:03,076][05724] Saving new best policy, reward=17.374!
[2025-03-01 04:31:05,495][05737] Updated weights for policy 0, policy_version 420 (0.0018)
[2025-03-01 04:31:08,069][00508] Fps is (10 sec: 4504.9, 60 sec: 4027.6, 300 sec: 4012.7). Total num frames: 1728512. Throughput: 0: 1017.7. Samples: 430480. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:08,070][00508] Avg episode reward: [(0, '17.958')]
[2025-03-01 04:31:08,079][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000422_1728512.pth...
[2025-03-01 04:31:08,267][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000184_753664.pth
[2025-03-01 04:31:08,284][05724] Saving new best policy, reward=17.958!
[2025-03-01 04:31:13,069][00508] Fps is (10 sec: 3685.8, 60 sec: 4027.6, 300 sec: 3998.8). Total num frames: 1744896. Throughput: 0: 993.7. Samples: 435390. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:31:13,074][00508] Avg episode reward: [(0, '16.499')]
[2025-03-01 04:31:16,256][05737] Updated weights for policy 0, policy_version 430 (0.0025)
[2025-03-01 04:31:18,067][00508] Fps is (10 sec: 4096.6, 60 sec: 4096.0, 300 sec: 4040.5). Total num frames: 1769472. Throughput: 0: 1004.4. Samples: 441908. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:31:18,069][00508] Avg episode reward: [(0, '16.600')]
[2025-03-01 04:31:23,069][00508] Fps is (10 sec: 4505.7, 60 sec: 4027.6, 300 sec: 4026.6). Total num frames: 1789952. Throughput: 0: 1008.6. Samples: 445472. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:23,070][00508] Avg episode reward: [(0, '15.669')]
[2025-03-01 04:31:26,921][05737] Updated weights for policy 0, policy_version 440 (0.0025)
[2025-03-01 04:31:28,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.9, 300 sec: 4012.7). Total num frames: 1806336. Throughput: 0: 995.5. Samples: 450434. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:28,071][00508] Avg episode reward: [(0, '15.754')]
[2025-03-01 04:31:33,067][00508] Fps is (10 sec: 4096.6, 60 sec: 4096.0, 300 sec: 4054.4). Total num frames: 1830912. Throughput: 0: 1022.2. Samples: 457710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:33,069][00508] Avg episode reward: [(0, '16.242')]
[2025-03-01 04:31:35,359][05737] Updated weights for policy 0, policy_version 450 (0.0016)
[2025-03-01 04:31:38,068][00508] Fps is (10 sec: 4505.5, 60 sec: 4027.7, 300 sec: 4040.5). Total num frames: 1851392. Throughput: 0: 1026.3. Samples: 461348. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:38,069][00508] Avg episode reward: [(0, '16.715')]
[2025-03-01 04:31:43,067][00508] Fps is (10 sec: 3686.3, 60 sec: 4096.0, 300 sec: 4026.6). Total num frames: 1867776. Throughput: 0: 1017.2. Samples: 466286. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:31:43,069][00508] Avg episode reward: [(0, '15.753')]
[2025-03-01 04:31:45,737][05737] Updated weights for policy 0, policy_version 460 (0.0037)
[2025-03-01 04:31:48,068][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 1892352. Throughput: 0: 1027.2. Samples: 473288. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:31:48,069][00508] Avg episode reward: [(0, '15.300')]
[2025-03-01 04:31:53,069][00508] Fps is (10 sec: 4504.8, 60 sec: 4095.9, 300 sec: 4054.3). Total num frames: 1912832. Throughput: 0: 1028.4. Samples: 476758. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:31:53,070][00508] Avg episode reward: [(0, '15.973')]
[2025-03-01 04:31:56,256][05737] Updated weights for policy 0, policy_version 470 (0.0014)
[2025-03-01 04:31:58,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4164.3, 300 sec: 4054.3). Total num frames: 1933312. Throughput: 0: 1030.3. Samples: 481754. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:31:58,072][00508] Avg episode reward: [(0, '15.805')]
[2025-03-01 04:32:03,068][00508] Fps is (10 sec: 4096.7, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 1953792. Throughput: 0: 1043.0. Samples: 488844. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:32:03,072][00508] Avg episode reward: [(0, '16.912')]
[2025-03-01 04:32:04,976][05737] Updated weights for policy 0, policy_version 480 (0.0022)
[2025-03-01 04:32:08,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.1, 300 sec: 4068.2). Total num frames: 1974272. Throughput: 0: 1037.8. Samples: 492172. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:32:08,069][00508] Avg episode reward: [(0, '16.811')]
[2025-03-01 04:32:13,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4164.4, 300 sec: 4068.2). Total num frames: 1994752. Throughput: 0: 1043.5. Samples: 497390. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:13,069][00508] Avg episode reward: [(0, '17.832')]
[2025-03-01 04:32:15,458][05737] Updated weights for policy 0, policy_version 490 (0.0019)
[2025-03-01 04:32:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 2015232. Throughput: 0: 1033.3. Samples: 504210. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:18,071][00508] Avg episode reward: [(0, '19.412')]
[2025-03-01 04:32:18,078][05724] Saving new best policy, reward=19.412!
[2025-03-01 04:32:23,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.8, 300 sec: 4054.3). Total num frames: 2031616. Throughput: 0: 1020.4. Samples: 507264. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:32:23,076][00508] Avg episode reward: [(0, '18.565')]
[2025-03-01 04:32:26,198][05737] Updated weights for policy 0, policy_version 500 (0.0018)
[2025-03-01 04:32:28,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 4068.2). Total num frames: 2056192. Throughput: 0: 1028.1. Samples: 512552. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:28,069][00508] Avg episode reward: [(0, '19.687')]
[2025-03-01 04:32:28,075][05724] Saving new best policy, reward=19.687!
[2025-03-01 04:32:33,067][00508] Fps is (10 sec: 4505.7, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 2076672. Throughput: 0: 1029.2. Samples: 519602. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:32:33,074][00508] Avg episode reward: [(0, '19.713')]
[2025-03-01 04:32:33,089][05724] Saving new best policy, reward=19.713!
[2025-03-01 04:32:36,282][05737] Updated weights for policy 0, policy_version 510 (0.0018)
[2025-03-01 04:32:38,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.8, 300 sec: 4054.3). Total num frames: 2093056. Throughput: 0: 1008.8. Samples: 522152. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:38,071][00508] Avg episode reward: [(0, '20.014')]
[2025-03-01 04:32:38,080][05724] Saving new best policy, reward=20.014!
[2025-03-01 04:32:43,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4068.3). Total num frames: 2113536. Throughput: 0: 1013.6. Samples: 527368. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:43,068][00508] Avg episode reward: [(0, '19.681')]
[2025-03-01 04:32:46,369][05737] Updated weights for policy 0, policy_version 520 (0.0017)
[2025-03-01 04:32:48,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.8, 300 sec: 4068.2). Total num frames: 2134016. Throughput: 0: 1004.1. Samples: 534028. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:32:48,069][00508] Avg episode reward: [(0, '19.886')]
[2025-03-01 04:32:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.6, 300 sec: 4040.5). Total num frames: 2150400. Throughput: 0: 983.1. Samples: 536410. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:32:53,069][00508] Avg episode reward: [(0, '19.618')]
[2025-03-01 04:32:57,431][05737] Updated weights for policy 0, policy_version 530 (0.0018)
[2025-03-01 04:32:58,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 4054.3). Total num frames: 2170880. Throughput: 0: 989.9. Samples: 541934. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:32:58,069][00508] Avg episode reward: [(0, '20.031')]
[2025-03-01 04:32:58,077][05724] Saving new best policy, reward=20.031!
[2025-03-01 04:33:03,069][00508] Fps is (10 sec: 4504.9, 60 sec: 4027.7, 300 sec: 4068.2). Total num frames: 2195456. Throughput: 0: 992.2. Samples: 548862. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:33:03,070][00508] Avg episode reward: [(0, '18.575')]
[2025-03-01 04:33:08,003][05737] Updated weights for policy 0, policy_version 540 (0.0034)
[2025-03-01 04:33:08,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 4054.3). Total num frames: 2211840. Throughput: 0: 977.5. Samples: 551250. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:33:08,069][00508] Avg episode reward: [(0, '17.557')]
[2025-03-01 04:33:08,075][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000540_2211840.pth...
[2025-03-01 04:33:08,202][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000302_1236992.pth
[2025-03-01 04:33:13,067][00508] Fps is (10 sec: 3686.9, 60 sec: 3959.5, 300 sec: 4068.2). Total num frames: 2232320. Throughput: 0: 995.1. Samples: 557330. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:33:13,070][00508] Avg episode reward: [(0, '17.635')]
[2025-03-01 04:33:16,829][05737] Updated weights for policy 0, policy_version 550 (0.0023)
[2025-03-01 04:33:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 4068.2). Total num frames: 2252800. Throughput: 0: 990.0. Samples: 564150. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:33:18,069][00508] Avg episode reward: [(0, '16.305')]
[2025-03-01 04:33:23,067][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 4040.5). Total num frames: 2269184. Throughput: 0: 980.6. Samples: 566280. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:33:23,068][00508] Avg episode reward: [(0, '16.686')]
[2025-03-01 04:33:27,584][05737] Updated weights for policy 0, policy_version 560 (0.0036)
[2025-03-01 04:33:28,067][00508] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 4068.2). Total num frames: 2293760. Throughput: 0: 1003.8. Samples: 572538. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:33:28,070][00508] Avg episode reward: [(0, '15.483')]
[2025-03-01 04:33:33,067][00508] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 4068.2). Total num frames: 2314240. Throughput: 0: 1009.2. Samples: 579444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:33:33,073][00508] Avg episode reward: [(0, '16.336')]
[2025-03-01 04:33:37,994][05737] Updated weights for policy 0, policy_version 570 (0.0020)
[2025-03-01 04:33:38,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2334720. Throughput: 0: 1004.0. Samples: 581592. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:33:38,072][00508] Avg episode reward: [(0, '17.177')]
[2025-03-01 04:33:43,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4082.1). Total num frames: 2355200. Throughput: 0: 1025.6. Samples: 588084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:33:43,073][00508] Avg episode reward: [(0, '16.996')]
[2025-03-01 04:33:46,839][05737] Updated weights for policy 0, policy_version 580 (0.0020)
[2025-03-01 04:33:48,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4068.2). Total num frames: 2375680. Throughput: 0: 1020.9. Samples: 594800. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:33:48,069][00508] Avg episode reward: [(0, '17.407')]
[2025-03-01 04:33:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2392064. Throughput: 0: 1011.9. Samples: 596784. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:33:53,073][00508] Avg episode reward: [(0, '18.518')]
[2025-03-01 04:33:57,862][05737] Updated weights for policy 0, policy_version 590 (0.0024)
[2025-03-01 04:33:58,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 2416640. Throughput: 0: 1013.6. Samples: 602944. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:33:58,069][00508] Avg episode reward: [(0, '19.400')]
[2025-03-01 04:34:03,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.8, 300 sec: 4068.2). Total num frames: 2437120. Throughput: 0: 1004.6. Samples: 609358. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:34:03,073][00508] Avg episode reward: [(0, '18.733')]
[2025-03-01 04:34:08,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2453504. Throughput: 0: 1005.7. Samples: 611536. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:34:08,072][00508] Avg episode reward: [(0, '18.928')]
[2025-03-01 04:34:08,405][05737] Updated weights for policy 0, policy_version 600 (0.0026)
[2025-03-01 04:34:13,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 2478080. Throughput: 0: 1018.3. Samples: 618362. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:34:13,071][00508] Avg episode reward: [(0, '19.060')]
[2025-03-01 04:34:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2494464. Throughput: 0: 1003.2. Samples: 624586. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:34:18,073][00508] Avg episode reward: [(0, '18.704')]
[2025-03-01 04:34:18,175][05737] Updated weights for policy 0, policy_version 610 (0.0025)
[2025-03-01 04:34:23,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4054.4). Total num frames: 2514944. Throughput: 0: 1004.4. Samples: 626790. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:34:23,068][00508] Avg episode reward: [(0, '20.148')]
[2025-03-01 04:34:23,074][05724] Saving new best policy, reward=20.148!
[2025-03-01 04:34:27,895][05737] Updated weights for policy 0, policy_version 620 (0.0018)
[2025-03-01 04:34:28,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 2539520. Throughput: 0: 1015.6. Samples: 633784. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:34:28,072][00508] Avg episode reward: [(0, '21.490')]
[2025-03-01 04:34:28,078][05724] Saving new best policy, reward=21.490!
[2025-03-01 04:34:33,074][00508] Fps is (10 sec: 4093.4, 60 sec: 4027.3, 300 sec: 4054.3). Total num frames: 2555904. Throughput: 0: 996.3. Samples: 639638. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2025-03-01 04:34:33,080][00508] Avg episode reward: [(0, '22.427')]
[2025-03-01 04:34:33,081][05724] Saving new best policy, reward=22.427!
[2025-03-01 04:34:38,068][00508] Fps is (10 sec: 3686.3, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2576384. Throughput: 0: 1007.3. Samples: 642112. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:34:38,075][00508] Avg episode reward: [(0, '22.181')]
[2025-03-01 04:34:38,563][05737] Updated weights for policy 0, policy_version 630 (0.0026)
[2025-03-01 04:34:43,067][00508] Fps is (10 sec: 4508.5, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 2600960. Throughput: 0: 1024.0. Samples: 649026. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2025-03-01 04:34:43,073][00508] Avg episode reward: [(0, '20.513')]
[2025-03-01 04:34:48,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2617344. Throughput: 0: 1005.8. Samples: 654620. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:34:48,071][00508] Avg episode reward: [(0, '20.325')]
[2025-03-01 04:34:49,362][05737] Updated weights for policy 0, policy_version 640 (0.0021)
[2025-03-01 04:34:53,068][00508] Fps is (10 sec: 3686.3, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 2637824. Throughput: 0: 1013.4. Samples: 657140. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:34:53,069][00508] Avg episode reward: [(0, '19.597')]
[2025-03-01 04:34:58,068][00508] Fps is (10 sec: 4095.9, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2658304. Throughput: 0: 1012.3. Samples: 663914. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:34:58,072][00508] Avg episode reward: [(0, '19.830')]
[2025-03-01 04:34:58,287][05737] Updated weights for policy 0, policy_version 650 (0.0015)
[2025-03-01 04:35:03,068][00508] Fps is (10 sec: 3686.4, 60 sec: 3959.4, 300 sec: 4026.6). Total num frames: 2674688. Throughput: 0: 997.4. Samples: 669468. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:35:03,071][00508] Avg episode reward: [(0, '19.181')]
[2025-03-01 04:35:08,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 2699264. Throughput: 0: 1014.6. Samples: 672446. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:35:08,070][00508] Avg episode reward: [(0, '19.222')]
[2025-03-01 04:35:08,077][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000659_2699264.pth...
[2025-03-01 04:35:08,200][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000422_1728512.pth
[2025-03-01 04:35:08,721][05737] Updated weights for policy 0, policy_version 660 (0.0024)
[2025-03-01 04:35:13,067][00508] Fps is (10 sec: 4505.8, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2719744. Throughput: 0: 1011.5. Samples: 679302. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:35:13,069][00508] Avg episode reward: [(0, '18.366')]
[2025-03-01 04:35:18,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 4026.6). Total num frames: 2736128. Throughput: 0: 998.2. Samples: 684552. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:35:18,069][00508] Avg episode reward: [(0, '18.657')]
[2025-03-01 04:35:19,271][05737] Updated weights for policy 0, policy_version 670 (0.0032)
[2025-03-01 04:35:23,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.4). Total num frames: 2760704. Throughput: 0: 1011.2. Samples: 687614. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:35:23,072][00508] Avg episode reward: [(0, '20.613')]
[2025-03-01 04:35:28,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2781184. Throughput: 0: 1013.5. Samples: 694632. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:35:28,070][00508] Avg episode reward: [(0, '20.476')]
[2025-03-01 04:35:28,281][05737] Updated weights for policy 0, policy_version 680 (0.0013)
[2025-03-01 04:35:33,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4028.2, 300 sec: 4026.6). Total num frames: 2797568. Throughput: 0: 1003.0. Samples: 699754. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:35:33,072][00508] Avg episode reward: [(0, '21.563')]
[2025-03-01 04:35:38,068][00508] Fps is (10 sec: 4095.9, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 2822144. Throughput: 0: 1027.1. Samples: 703358. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:35:38,072][00508] Avg episode reward: [(0, '22.621')]
[2025-03-01 04:35:38,080][05724] Saving new best policy, reward=22.621!
[2025-03-01 04:35:38,592][05737] Updated weights for policy 0, policy_version 690 (0.0019)
[2025-03-01 04:35:43,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 4054.3). Total num frames: 2842624. Throughput: 0: 1032.4. Samples: 710370. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:35:43,074][00508] Avg episode reward: [(0, '21.114')]
[2025-03-01 04:35:48,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 2863104. Throughput: 0: 1021.9. Samples: 715454. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:35:48,072][00508] Avg episode reward: [(0, '19.550')]
[2025-03-01 04:35:48,742][05737] Updated weights for policy 0, policy_version 700 (0.0016)
[2025-03-01 04:35:53,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 2883584. Throughput: 0: 1028.7. Samples: 718738. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:35:53,070][00508] Avg episode reward: [(0, '19.805')]
[2025-03-01 04:35:58,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 2904064. Throughput: 0: 1031.1. Samples: 725702. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:35:58,069][00508] Avg episode reward: [(0, '19.587')]
[2025-03-01 04:35:58,541][05737] Updated weights for policy 0, policy_version 710 (0.0019)
[2025-03-01 04:36:03,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4040.5). Total num frames: 2920448. Throughput: 0: 1025.5. Samples: 730698. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:36:03,069][00508] Avg episode reward: [(0, '20.052')]
[2025-03-01 04:36:08,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4068.3). Total num frames: 2945024. Throughput: 0: 1033.7. Samples: 734130. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:36:08,069][00508] Avg episode reward: [(0, '18.626')]
[2025-03-01 04:36:08,428][05737] Updated weights for policy 0, policy_version 720 (0.0018)
[2025-03-01 04:36:13,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 2965504. Throughput: 0: 1029.2. Samples: 740944. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2025-03-01 04:36:13,070][00508] Avg episode reward: [(0, '19.064')]
[2025-03-01 04:36:18,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4040.5). Total num frames: 2981888. Throughput: 0: 1028.8. Samples: 746050. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:36:18,069][00508] Avg episode reward: [(0, '19.739')]
[2025-03-01 04:36:19,087][05737] Updated weights for policy 0, policy_version 730 (0.0017)
[2025-03-01 04:36:23,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4068.2). Total num frames: 3006464. Throughput: 0: 1024.1. Samples: 749440. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:36:23,076][00508] Avg episode reward: [(0, '17.345')]
[2025-03-01 04:36:28,074][00508] Fps is (10 sec: 4093.3, 60 sec: 4027.3, 300 sec: 4040.4). Total num frames: 3022848. Throughput: 0: 1009.0. Samples: 755782. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:36:28,076][00508] Avg episode reward: [(0, '17.959')]
[2025-03-01 04:36:30,062][05737] Updated weights for policy 0, policy_version 740 (0.0019)
[2025-03-01 04:36:33,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4040.5). Total num frames: 3043328. Throughput: 0: 1009.2. Samples: 760866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:36:33,069][00508] Avg episode reward: [(0, '18.919')]
[2025-03-01 04:36:38,067][00508] Fps is (10 sec: 4098.7, 60 sec: 4027.8, 300 sec: 4054.3). Total num frames: 3063808. Throughput: 0: 1012.8. Samples: 764314. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:36:38,069][00508] Avg episode reward: [(0, '18.293')]
[2025-03-01 04:36:38,972][05737] Updated weights for policy 0, policy_version 750 (0.0013)
[2025-03-01 04:36:43,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4040.5). Total num frames: 3084288. Throughput: 0: 996.5. Samples: 770546. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:36:43,069][00508] Avg episode reward: [(0, '18.888')]
[2025-03-01 04:36:48,072][00508] Fps is (10 sec: 3684.7, 60 sec: 3959.2, 300 sec: 4026.5). Total num frames: 3100672. Throughput: 0: 1004.0. Samples: 775884. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:36:48,073][00508] Avg episode reward: [(0, '18.767')]
[2025-03-01 04:36:50,027][05737] Updated weights for policy 0, policy_version 760 (0.0022)
[2025-03-01 04:36:53,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4040.5). Total num frames: 3125248. Throughput: 0: 1003.7. Samples: 779296. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2025-03-01 04:36:53,072][00508] Avg episode reward: [(0, '18.780')]
[2025-03-01 04:36:58,067][00508] Fps is (10 sec: 4097.8, 60 sec: 3959.5, 300 sec: 4026.6). Total num frames: 3141632. Throughput: 0: 981.4. Samples: 785108. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:36:58,069][00508] Avg episode reward: [(0, '19.355')]
[2025-03-01 04:37:00,456][05737] Updated weights for policy 0, policy_version 770 (0.0024)
[2025-03-01 04:37:03,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 4026.6). Total num frames: 3162112. Throughput: 0: 1000.5. Samples: 791074. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:37:03,072][00508] Avg episode reward: [(0, '20.170')]
[2025-03-01 04:37:08,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 4040.5). Total num frames: 3186688. Throughput: 0: 1005.9. Samples: 794704. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:37:08,070][00508] Avg episode reward: [(0, '20.211')]
[2025-03-01 04:37:08,078][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000778_3186688.pth...
[2025-03-01 04:37:08,201][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000540_2211840.pth
[2025-03-01 04:37:09,391][05737] Updated weights for policy 0, policy_version 780 (0.0013)
[2025-03-01 04:37:13,068][00508] Fps is (10 sec: 4095.8, 60 sec: 3959.4, 300 sec: 4026.6). Total num frames: 3203072. Throughput: 0: 996.9. Samples: 800636. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:37:13,069][00508] Avg episode reward: [(0, '20.156')]
[2025-03-01 04:37:18,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 3227648. Throughput: 0: 1023.6. Samples: 806928. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:37:18,072][00508] Avg episode reward: [(0, '21.242')]
[2025-03-01 04:37:19,461][05737] Updated weights for policy 0, policy_version 790 (0.0022)
[2025-03-01 04:37:23,067][00508] Fps is (10 sec: 4505.8, 60 sec: 4027.7, 300 sec: 4040.5). Total num frames: 3248128. Throughput: 0: 1025.2. Samples: 810450. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:37:23,069][00508] Avg episode reward: [(0, '19.771')]
[2025-03-01 04:37:28,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4028.2, 300 sec: 4026.6). Total num frames: 3264512. Throughput: 0: 1009.0. Samples: 815952. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:37:28,069][00508] Avg episode reward: [(0, '20.689')]
[2025-03-01 04:37:29,887][05737] Updated weights for policy 0, policy_version 800 (0.0027)
[2025-03-01 04:37:33,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 3289088. Throughput: 0: 1040.3. Samples: 822694. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:37:33,072][00508] Avg episode reward: [(0, '21.720')]
[2025-03-01 04:37:38,067][00508] Fps is (10 sec: 4915.1, 60 sec: 4164.3, 300 sec: 4068.2). Total num frames: 3313664. Throughput: 0: 1044.0. Samples: 826276. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:37:38,071][00508] Avg episode reward: [(0, '21.607')]
[2025-03-01 04:37:38,927][05737] Updated weights for policy 0, policy_version 810 (0.0015)
[2025-03-01 04:37:43,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4054.3). Total num frames: 3330048. Throughput: 0: 1034.4. Samples: 831658. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:37:43,072][00508] Avg episode reward: [(0, '22.166')]
[2025-03-01 04:37:48,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4232.8, 300 sec: 4082.1). Total num frames: 3354624. Throughput: 0: 1057.6. Samples: 838664. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:37:48,071][00508] Avg episode reward: [(0, '22.429')]
[2025-03-01 04:37:48,536][05737] Updated weights for policy 0, policy_version 820 (0.0021)
[2025-03-01 04:37:53,068][00508] Fps is (10 sec: 4505.4, 60 sec: 4164.2, 300 sec: 4082.1). Total num frames: 3375104. Throughput: 0: 1056.3. Samples: 842238. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:37:53,073][00508] Avg episode reward: [(0, '23.176')]
[2025-03-01 04:37:53,074][05724] Saving new best policy, reward=23.176!
[2025-03-01 04:37:58,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4164.3, 300 sec: 4054.4). Total num frames: 3391488. Throughput: 0: 1032.6. Samples: 847104. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:37:58,074][00508] Avg episode reward: [(0, '22.776')]
[2025-03-01 04:37:59,226][05737] Updated weights for policy 0, policy_version 830 (0.0023)
[2025-03-01 04:38:03,067][00508] Fps is (10 sec: 4096.2, 60 sec: 4232.5, 300 sec: 4082.1). Total num frames: 3416064. Throughput: 0: 1049.3. Samples: 854148. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:03,069][00508] Avg episode reward: [(0, '22.069')]
[2025-03-01 04:38:08,068][00508] Fps is (10 sec: 4505.4, 60 sec: 4164.2, 300 sec: 4082.1). Total num frames: 3436544. Throughput: 0: 1046.5. Samples: 857544. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:08,069][00508] Avg episode reward: [(0, '22.241')]
[2025-03-01 04:38:09,226][05737] Updated weights for policy 0, policy_version 840 (0.0018)
[2025-03-01 04:38:13,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4164.3, 300 sec: 4068.2). Total num frames: 3452928. Throughput: 0: 1033.7. Samples: 862468. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:13,069][00508] Avg episode reward: [(0, '22.410')]
[2025-03-01 04:38:18,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4164.3, 300 sec: 4096.0). Total num frames: 3477504. Throughput: 0: 1043.6. Samples: 869654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:18,072][00508] Avg episode reward: [(0, '21.943')]
[2025-03-01 04:38:18,368][05737] Updated weights for policy 0, policy_version 850 (0.0022)
[2025-03-01 04:38:23,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 4082.1). Total num frames: 3497984. Throughput: 0: 1043.0. Samples: 873212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:23,068][00508] Avg episode reward: [(0, '21.838')]
[2025-03-01 04:38:28,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4232.5, 300 sec: 4082.1). Total num frames: 3518464. Throughput: 0: 1033.9. Samples: 878182. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:28,071][00508] Avg episode reward: [(0, '22.390')]
[2025-03-01 04:38:28,760][05737] Updated weights for policy 0, policy_version 860 (0.0021)
[2025-03-01 04:38:33,069][00508] Fps is (10 sec: 4504.7, 60 sec: 4232.4, 300 sec: 4096.0). Total num frames: 3543040. Throughput: 0: 1041.4. Samples: 885528. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:33,074][00508] Avg episode reward: [(0, '20.990')]
[2025-03-01 04:38:38,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 3559424. Throughput: 0: 1039.9. Samples: 889032. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:38:38,072][00508] Avg episode reward: [(0, '22.403')]
[2025-03-01 04:38:38,672][05737] Updated weights for policy 0, policy_version 870 (0.0023)
[2025-03-01 04:38:43,067][00508] Fps is (10 sec: 3687.2, 60 sec: 4164.3, 300 sec: 4082.1). Total num frames: 3579904. Throughput: 0: 1046.5. Samples: 894198. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2025-03-01 04:38:43,071][00508] Avg episode reward: [(0, '21.629')]
[2025-03-01 04:38:47,374][05737] Updated weights for policy 0, policy_version 880 (0.0013)
[2025-03-01 04:38:48,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 4109.9). Total num frames: 3604480. Throughput: 0: 1052.0. Samples: 901490. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:38:48,069][00508] Avg episode reward: [(0, '20.426')]
[2025-03-01 04:38:53,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 3620864. Throughput: 0: 1048.7. Samples: 904734. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:38:53,076][00508] Avg episode reward: [(0, '20.630')]
[2025-03-01 04:38:57,747][05737] Updated weights for policy 0, policy_version 890 (0.0024)
[2025-03-01 04:38:58,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4232.5, 300 sec: 4096.0). Total num frames: 3645440. Throughput: 0: 1059.6. Samples: 910148. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:38:58,072][00508] Avg episode reward: [(0, '19.680')]
[2025-03-01 04:39:03,067][00508] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 4109.9). Total num frames: 3665920. Throughput: 0: 1051.8. Samples: 916986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:39:03,072][00508] Avg episode reward: [(0, '19.398')]
[2025-03-01 04:39:08,068][00508] Fps is (10 sec: 3686.2, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 3682304. Throughput: 0: 1037.8. Samples: 919912. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:39:08,069][00508] Avg episode reward: [(0, '19.586')]
[2025-03-01 04:39:08,154][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000900_3686400.pth...
[2025-03-01 04:39:08,165][05737] Updated weights for policy 0, policy_version 900 (0.0028)
[2025-03-01 04:39:08,319][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000659_2699264.pth
[2025-03-01 04:39:13,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4164.3, 300 sec: 4096.0). Total num frames: 3702784. Throughput: 0: 1044.1. Samples: 925168. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:39:13,069][00508] Avg episode reward: [(0, '20.417')]
[2025-03-01 04:39:17,475][05737] Updated weights for policy 0, policy_version 910 (0.0018)
[2025-03-01 04:39:18,068][00508] Fps is (10 sec: 4505.7, 60 sec: 4164.2, 300 sec: 4109.9). Total num frames: 3727360. Throughput: 0: 1034.6. Samples: 932084. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2025-03-01 04:39:18,069][00508] Avg episode reward: [(0, '20.512')]
[2025-03-01 04:39:23,070][00508] Fps is (10 sec: 4094.9, 60 sec: 4095.8, 300 sec: 4082.1). Total num frames: 3743744. Throughput: 0: 1014.8. Samples: 934700. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2025-03-01 04:39:23,071][00508] Avg episode reward: [(0, '21.654')]
[2025-03-01 04:39:28,067][00508] Fps is (10 sec: 3686.5, 60 sec: 4096.0, 300 sec: 4096.1). Total num frames: 3764224. Throughput: 0: 1025.7. Samples: 940354. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:39:28,069][00508] Avg episode reward: [(0, '21.382')]
[2025-03-01 04:39:28,221][05737] Updated weights for policy 0, policy_version 920 (0.0017)
[2025-03-01 04:39:33,071][00508] Fps is (10 sec: 4505.3, 60 sec: 4095.9, 300 sec: 4109.8). Total num frames: 3788800. Throughput: 0: 1024.2. Samples: 947582. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:39:33,072][00508] Avg episode reward: [(0, '22.210')]
[2025-03-01 04:39:38,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4096.0, 300 sec: 4082.1). Total num frames: 3805184. Throughput: 0: 1007.7. Samples: 950082. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:39:38,071][00508] Avg episode reward: [(0, '22.092')]
[2025-03-01 04:39:38,503][05737] Updated weights for policy 0, policy_version 930 (0.0016)
[2025-03-01 04:39:43,067][00508] Fps is (10 sec: 4097.4, 60 sec: 4164.3, 300 sec: 4109.9). Total num frames: 3829760. Throughput: 0: 1023.0. Samples: 956182. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:39:43,068][00508] Avg episode reward: [(0, '19.820')]
[2025-03-01 04:39:47,414][05737] Updated weights for policy 0, policy_version 940 (0.0018)
[2025-03-01 04:39:48,068][00508] Fps is (10 sec: 4505.4, 60 sec: 4096.0, 300 sec: 4109.9). Total num frames: 3850240. Throughput: 0: 1023.9. Samples: 963060. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2025-03-01 04:39:48,069][00508] Avg episode reward: [(0, '18.692')]
[2025-03-01 04:39:53,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4096.0). Total num frames: 3866624. Throughput: 0: 1004.9. Samples: 965134. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:39:53,072][00508] Avg episode reward: [(0, '18.731')]
[2025-03-01 04:39:57,985][05737] Updated weights for policy 0, policy_version 950 (0.0023)
[2025-03-01 04:39:58,067][00508] Fps is (10 sec: 4096.2, 60 sec: 4096.0, 300 sec: 4123.8). Total num frames: 3891200. Throughput: 0: 1023.0. Samples: 971202. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:39:58,074][00508] Avg episode reward: [(0, '19.864')]
[2025-03-01 04:40:03,067][00508] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 4096.0). Total num frames: 3907584. Throughput: 0: 1015.7. Samples: 977788. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2025-03-01 04:40:03,068][00508] Avg episode reward: [(0, '19.912')]
[2025-03-01 04:40:08,067][00508] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 4096.0). Total num frames: 3928064. Throughput: 0: 1002.5. Samples: 979808. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:40:08,071][00508] Avg episode reward: [(0, '20.278')]
[2025-03-01 04:40:08,900][05737] Updated weights for policy 0, policy_version 960 (0.0017)
[2025-03-01 04:40:13,067][00508] Fps is (10 sec: 4095.9, 60 sec: 4096.0, 300 sec: 4109.9). Total num frames: 3948544. Throughput: 0: 1021.4. Samples: 986318. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2025-03-01 04:40:13,069][00508] Avg episode reward: [(0, '20.900')]
[2025-03-01 04:40:18,069][00508] Fps is (10 sec: 4095.5, 60 sec: 4027.7, 300 sec: 4096.0). Total num frames: 3969024. Throughput: 0: 1002.3. Samples: 992684. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2025-03-01 04:40:18,070][00508] Avg episode reward: [(0, '22.222')]
[2025-03-01 04:40:18,583][05737] Updated weights for policy 0, policy_version 970 (0.0013)
[2025-03-01 04:40:23,067][00508] Fps is (10 sec: 4096.1, 60 sec: 4096.2, 300 sec: 4096.0). Total num frames: 3989504. Throughput: 0: 995.4. Samples: 994876. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2025-03-01 04:40:23,073][00508] Avg episode reward: [(0, '22.387')]
[2025-03-01 04:40:26,337][05724] Stopping Batcher_0...
[2025-03-01 04:40:26,337][05724] Loop batcher_evt_loop terminating...
[2025-03-01 04:40:26,337][00508] Component Batcher_0 stopped!
[2025-03-01 04:40:26,339][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2025-03-01 04:40:26,408][05737] Weights refcount: 2 0
[2025-03-01 04:40:26,410][05737] Stopping InferenceWorker_p0-w0...
[2025-03-01 04:40:26,411][05737] Loop inference_proc0-0_evt_loop terminating...
[2025-03-01 04:40:26,411][00508] Component InferenceWorker_p0-w0 stopped!
[2025-03-01 04:40:26,472][05724] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000778_3186688.pth
[2025-03-01 04:40:26,491][05724] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2025-03-01 04:40:26,683][00508] Component LearnerWorker_p0 stopped!
[2025-03-01 04:40:26,687][05724] Stopping LearnerWorker_p0...
[2025-03-01 04:40:26,687][05724] Loop learner_proc0_evt_loop terminating...
[2025-03-01 04:40:26,706][05743] Stopping RolloutWorker_w5...
[2025-03-01 04:40:26,706][00508] Component RolloutWorker_w5 stopped!
[2025-03-01 04:40:26,706][05743] Loop rollout_proc5_evt_loop terminating...
[2025-03-01 04:40:26,728][00508] Component RolloutWorker_w7 stopped!
[2025-03-01 04:40:26,728][05745] Stopping RolloutWorker_w7...
[2025-03-01 04:40:26,734][05745] Loop rollout_proc7_evt_loop terminating...
[2025-03-01 04:40:26,750][05742] Stopping RolloutWorker_w3...
[2025-03-01 04:40:26,750][00508] Component RolloutWorker_w3 stopped!
[2025-03-01 04:40:26,751][05742] Loop rollout_proc3_evt_loop terminating...
[2025-03-01 04:40:26,781][05739] Stopping RolloutWorker_w1...
[2025-03-01 04:40:26,781][00508] Component RolloutWorker_w1 stopped!
[2025-03-01 04:40:26,782][05739] Loop rollout_proc1_evt_loop terminating...
[2025-03-01 04:40:26,796][00508] Component RolloutWorker_w6 stopped!
[2025-03-01 04:40:26,798][05744] Stopping RolloutWorker_w6...
[2025-03-01 04:40:26,799][05744] Loop rollout_proc6_evt_loop terminating...
[2025-03-01 04:40:26,839][00508] Component RolloutWorker_w2 stopped!
[2025-03-01 04:40:26,842][05740] Stopping RolloutWorker_w2...
[2025-03-01 04:40:26,842][05740] Loop rollout_proc2_evt_loop terminating...
[2025-03-01 04:40:26,866][00508] Component RolloutWorker_w4 stopped!
[2025-03-01 04:40:26,868][05741] Stopping RolloutWorker_w4...
[2025-03-01 04:40:26,868][05741] Loop rollout_proc4_evt_loop terminating...
[2025-03-01 04:40:26,882][00508] Component RolloutWorker_w0 stopped!
[2025-03-01 04:40:26,887][05738] Stopping RolloutWorker_w0...
[2025-03-01 04:40:26,885][00508] Waiting for process learner_proc0 to stop...
[2025-03-01 04:40:26,887][05738] Loop rollout_proc0_evt_loop terminating...
[2025-03-01 04:40:28,528][00508] Waiting for process inference_proc0-0 to join...
[2025-03-01 04:40:28,529][00508] Waiting for process rollout_proc0 to join...
[2025-03-01 04:40:30,673][00508] Waiting for process rollout_proc1 to join...
[2025-03-01 04:40:30,674][00508] Waiting for process rollout_proc2 to join...
[2025-03-01 04:40:30,678][00508] Waiting for process rollout_proc3 to join...
[2025-03-01 04:40:30,681][00508] Waiting for process rollout_proc4 to join...
[2025-03-01 04:40:30,682][00508] Waiting for process rollout_proc5 to join...
[2025-03-01 04:40:30,683][00508] Waiting for process rollout_proc6 to join...
[2025-03-01 04:40:30,688][00508] Waiting for process rollout_proc7 to join...
[2025-03-01 04:40:30,689][00508] Batcher 0 profile tree view:
batching: 25.8264, releasing_batches: 0.0262
[2025-03-01 04:40:30,690][00508] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 403.6100
update_model: 8.1271
weight_update: 0.0016
one_step: 0.0025
handle_policy_step: 562.1779
deserialize: 14.0336, stack: 3.0378, obs_to_device_normalize: 118.1011, forward: 287.8747, send_messages: 27.8397
prepare_outputs: 87.0253
to_cpu: 53.5527
[2025-03-01 04:40:30,691][00508] Learner 0 profile tree view:
misc: 0.0061, prepare_batch: 12.7498
train: 72.2272
epoch_init: 0.0165, minibatch_init: 0.0116, losses_postprocess: 0.7046, kl_divergence: 0.6138, after_optimizer: 33.5758
calculate_losses: 25.2969
losses_init: 0.0076, forward_head: 1.3683, bptt_initial: 16.6979, tail: 1.0838, advantages_returns: 0.2911, losses: 3.5949
bptt: 1.9668
bptt_forward_core: 1.8833
update: 11.4467
clip: 0.8708
[2025-03-01 04:40:30,692][00508] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.2903, enqueue_policy_requests: 95.6042, env_step: 800.5716, overhead: 11.7779, complete_rollouts: 7.0951
save_policy_outputs: 17.6928
split_output_tensors: 6.8878
[2025-03-01 04:40:30,693][00508] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.2412, enqueue_policy_requests: 99.2166, env_step: 799.6222, overhead: 12.0562, complete_rollouts: 6.6308
save_policy_outputs: 17.8076
split_output_tensors: 6.8517
[2025-03-01 04:40:30,694][00508] Loop Runner_EvtLoop terminating...
[2025-03-01 04:40:30,695][00508] Runner profile tree view:
main_loop: 1037.7149
[2025-03-01 04:40:30,696][00508] Collected {0: 4005888}, FPS: 3860.3
[2025-03-01 04:47:13,437][00508] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2025-03-01 04:47:13,438][00508] Overriding arg 'num_workers' with value 1 passed from command line
[2025-03-01 04:47:13,439][00508] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-03-01 04:47:13,441][00508] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-03-01 04:47:13,441][00508] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-03-01 04:47:13,442][00508] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-03-01 04:47:13,443][00508] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2025-03-01 04:47:13,444][00508] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-03-01 04:47:13,445][00508] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2025-03-01 04:47:13,446][00508] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2025-03-01 04:47:13,447][00508] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-03-01 04:47:13,448][00508] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-03-01 04:47:13,449][00508] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-03-01 04:47:13,450][00508] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-03-01 04:47:13,451][00508] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-03-01 04:47:13,481][00508] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-03-01 04:47:13,484][00508] RunningMeanStd input shape: (3, 72, 128)
[2025-03-01 04:47:13,486][00508] RunningMeanStd input shape: (1,)
[2025-03-01 04:47:13,500][00508] ConvEncoder: input_channels=3
[2025-03-01 04:47:13,597][00508] Conv encoder output size: 512
[2025-03-01 04:47:13,598][00508] Policy head output size: 512
[2025-03-01 04:47:13,772][00508] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2025-03-01 04:47:14,534][00508] Num frames 100...
[2025-03-01 04:47:14,661][00508] Num frames 200...
[2025-03-01 04:47:14,789][00508] Num frames 300...
[2025-03-01 04:47:14,917][00508] Num frames 400...
[2025-03-01 04:47:15,044][00508] Num frames 500...
[2025-03-01 04:47:15,184][00508] Num frames 600...
[2025-03-01 04:47:15,314][00508] Num frames 700...
[2025-03-01 04:47:15,440][00508] Num frames 800...
[2025-03-01 04:47:15,567][00508] Num frames 900...
[2025-03-01 04:47:15,696][00508] Num frames 1000...
[2025-03-01 04:47:15,823][00508] Num frames 1100...
[2025-03-01 04:47:15,950][00508] Num frames 1200...
[2025-03-01 04:47:16,075][00508] Num frames 1300...
[2025-03-01 04:47:16,213][00508] Num frames 1400...
[2025-03-01 04:47:16,359][00508] Avg episode rewards: #0: 31.720, true rewards: #0: 14.720
[2025-03-01 04:47:16,360][00508] Avg episode reward: 31.720, avg true_objective: 14.720
[2025-03-01 04:47:16,400][00508] Num frames 1500...
[2025-03-01 04:47:16,571][00508] Num frames 1600...
[2025-03-01 04:47:16,756][00508] Num frames 1700...
[2025-03-01 04:47:16,929][00508] Num frames 1800...
[2025-03-01 04:47:17,097][00508] Num frames 1900...
[2025-03-01 04:47:17,281][00508] Num frames 2000...
[2025-03-01 04:47:17,417][00508] Avg episode rewards: #0: 21.240, true rewards: #0: 10.240
[2025-03-01 04:47:17,419][00508] Avg episode reward: 21.240, avg true_objective: 10.240
[2025-03-01 04:47:17,511][00508] Num frames 2100...
[2025-03-01 04:47:17,671][00508] Num frames 2200...
[2025-03-01 04:47:17,845][00508] Num frames 2300...
[2025-03-01 04:47:18,017][00508] Num frames 2400...
[2025-03-01 04:47:18,197][00508] Num frames 2500...
[2025-03-01 04:47:18,387][00508] Num frames 2600...
[2025-03-01 04:47:18,514][00508] Num frames 2700...
[2025-03-01 04:47:18,642][00508] Num frames 2800...
[2025-03-01 04:47:18,767][00508] Num frames 2900...
[2025-03-01 04:47:18,897][00508] Num frames 3000...
[2025-03-01 04:47:19,024][00508] Num frames 3100...
[2025-03-01 04:47:19,155][00508] Num frames 3200...
[2025-03-01 04:47:19,284][00508] Num frames 3300...
[2025-03-01 04:47:19,420][00508] Num frames 3400...
[2025-03-01 04:47:19,551][00508] Num frames 3500...
[2025-03-01 04:47:19,684][00508] Num frames 3600...
[2025-03-01 04:47:19,815][00508] Num frames 3700...
[2025-03-01 04:47:19,947][00508] Num frames 3800...
[2025-03-01 04:47:20,082][00508] Num frames 3900...
[2025-03-01 04:47:20,222][00508] Num frames 4000...
[2025-03-01 04:47:20,274][00508] Avg episode rewards: #0: 30.000, true rewards: #0: 13.333
[2025-03-01 04:47:20,275][00508] Avg episode reward: 30.000, avg true_objective: 13.333
[2025-03-01 04:47:20,416][00508] Num frames 4100...
[2025-03-01 04:47:20,547][00508] Num frames 4200...
[2025-03-01 04:47:20,677][00508] Num frames 4300...
[2025-03-01 04:47:20,806][00508] Num frames 4400...
[2025-03-01 04:47:20,939][00508] Num frames 4500...
[2025-03-01 04:47:21,072][00508] Num frames 4600...
[2025-03-01 04:47:21,208][00508] Num frames 4700...
[2025-03-01 04:47:21,342][00508] Num frames 4800...
[2025-03-01 04:47:21,486][00508] Num frames 4900...
[2025-03-01 04:47:21,621][00508] Num frames 5000...
[2025-03-01 04:47:21,752][00508] Num frames 5100...
[2025-03-01 04:47:21,882][00508] Num frames 5200...
[2025-03-01 04:47:22,064][00508] Avg episode rewards: #0: 30.247, true rewards: #0: 13.247
[2025-03-01 04:47:22,065][00508] Avg episode reward: 30.247, avg true_objective: 13.247
[2025-03-01 04:47:22,069][00508] Num frames 5300...
[2025-03-01 04:47:22,207][00508] Num frames 5400...
[2025-03-01 04:47:22,335][00508] Num frames 5500...
[2025-03-01 04:47:22,471][00508] Num frames 5600...
[2025-03-01 04:47:22,599][00508] Num frames 5700...
[2025-03-01 04:47:22,716][00508] Avg episode rewards: #0: 25.294, true rewards: #0: 11.494
[2025-03-01 04:47:22,717][00508] Avg episode reward: 25.294, avg true_objective: 11.494
[2025-03-01 04:47:22,789][00508] Num frames 5800...
[2025-03-01 04:47:22,917][00508] Num frames 5900...
[2025-03-01 04:47:23,043][00508] Num frames 6000...
[2025-03-01 04:47:23,177][00508] Num frames 6100...
[2025-03-01 04:47:23,307][00508] Num frames 6200...
[2025-03-01 04:47:23,448][00508] Num frames 6300...
[2025-03-01 04:47:23,575][00508] Num frames 6400...
[2025-03-01 04:47:23,704][00508] Num frames 6500...
[2025-03-01 04:47:23,833][00508] Num frames 6600...
[2025-03-01 04:47:23,984][00508] Avg episode rewards: #0: 25.125, true rewards: #0: 11.125
[2025-03-01 04:47:23,985][00508] Avg episode reward: 25.125, avg true_objective: 11.125
[2025-03-01 04:47:24,020][00508] Num frames 6700...
[2025-03-01 04:47:24,151][00508] Num frames 6800...
[2025-03-01 04:47:24,279][00508] Num frames 6900...
[2025-03-01 04:47:24,408][00508] Num frames 7000...
[2025-03-01 04:47:24,542][00508] Num frames 7100...
[2025-03-01 04:47:24,672][00508] Num frames 7200...
[2025-03-01 04:47:24,804][00508] Num frames 7300...
[2025-03-01 04:47:24,936][00508] Num frames 7400...
[2025-03-01 04:47:25,088][00508] Avg episode rewards: #0: 23.679, true rewards: #0: 10.679
[2025-03-01 04:47:25,089][00508] Avg episode reward: 23.679, avg true_objective: 10.679
[2025-03-01 04:47:25,127][00508] Num frames 7500...
[2025-03-01 04:47:25,256][00508] Num frames 7600...
[2025-03-01 04:47:25,384][00508] Num frames 7700...
[2025-03-01 04:47:25,518][00508] Num frames 7800...
[2025-03-01 04:47:25,647][00508] Num frames 7900...
[2025-03-01 04:47:25,778][00508] Num frames 8000...
[2025-03-01 04:47:25,907][00508] Num frames 8100...
[2025-03-01 04:47:26,035][00508] Num frames 8200...
[2025-03-01 04:47:26,167][00508] Num frames 8300...
[2025-03-01 04:47:26,295][00508] Num frames 8400...
[2025-03-01 04:47:26,424][00508] Num frames 8500...
[2025-03-01 04:47:26,559][00508] Num frames 8600...
[2025-03-01 04:47:26,688][00508] Num frames 8700...
[2025-03-01 04:47:26,819][00508] Num frames 8800...
[2025-03-01 04:47:26,960][00508] Num frames 8900...
[2025-03-01 04:47:27,091][00508] Num frames 9000...
[2025-03-01 04:47:27,213][00508] Avg episode rewards: #0: 25.808, true rewards: #0: 11.307
[2025-03-01 04:47:27,214][00508] Avg episode reward: 25.808, avg true_objective: 11.307
[2025-03-01 04:47:27,284][00508] Num frames 9100...
[2025-03-01 04:47:27,412][00508] Num frames 9200...
[2025-03-01 04:47:27,547][00508] Num frames 9300...
[2025-03-01 04:47:27,677][00508] Num frames 9400...
[2025-03-01 04:47:27,804][00508] Num frames 9500...
[2025-03-01 04:47:27,930][00508] Num frames 9600...
[2025-03-01 04:47:28,056][00508] Num frames 9700...
[2025-03-01 04:47:28,190][00508] Num frames 9800...
[2025-03-01 04:47:28,319][00508] Num frames 9900...
[2025-03-01 04:47:28,480][00508] Num frames 10000...
[2025-03-01 04:47:28,627][00508] Avg episode rewards: #0: 25.383, true rewards: #0: 11.161
[2025-03-01 04:47:28,628][00508] Avg episode reward: 25.383, avg true_objective: 11.161
[2025-03-01 04:47:28,730][00508] Num frames 10100...
[2025-03-01 04:47:28,907][00508] Num frames 10200...
[2025-03-01 04:47:29,080][00508] Num frames 10300...
[2025-03-01 04:47:29,261][00508] Num frames 10400...
[2025-03-01 04:47:29,454][00508] Num frames 10500...
[2025-03-01 04:47:29,629][00508] Num frames 10600...
[2025-03-01 04:47:29,802][00508] Num frames 10700...
[2025-03-01 04:47:29,981][00508] Num frames 10800...
[2025-03-01 04:47:30,172][00508] Num frames 10900...
[2025-03-01 04:47:30,355][00508] Num frames 11000...
[2025-03-01 04:47:30,509][00508] Num frames 11100...
[2025-03-01 04:47:30,647][00508] Num frames 11200...
[2025-03-01 04:47:30,779][00508] Avg episode rewards: #0: 25.559, true rewards: #0: 11.259
[2025-03-01 04:47:30,780][00508] Avg episode reward: 25.559, avg true_objective: 11.259
[2025-03-01 04:48:39,040][00508] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2025-03-01 04:50:18,978][00508] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2025-03-01 04:50:18,979][00508] Overriding arg 'num_workers' with value 1 passed from command line
[2025-03-01 04:50:18,980][00508] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-03-01 04:50:18,980][00508] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-03-01 04:50:18,981][00508] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-03-01 04:50:18,982][00508] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-03-01 04:50:18,983][00508] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2025-03-01 04:50:18,984][00508] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-03-01 04:50:18,985][00508] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2025-03-01 04:50:18,985][00508] Adding new argument 'hf_repository'='sighmon/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2025-03-01 04:50:18,987][00508] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-03-01 04:50:18,989][00508] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-03-01 04:50:18,990][00508] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-03-01 04:50:18,992][00508] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-03-01 04:50:18,993][00508] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-03-01 04:50:19,017][00508] RunningMeanStd input shape: (3, 72, 128)
[2025-03-01 04:50:19,019][00508] RunningMeanStd input shape: (1,)
[2025-03-01 04:50:19,030][00508] ConvEncoder: input_channels=3
[2025-03-01 04:50:19,062][00508] Conv encoder output size: 512
[2025-03-01 04:50:19,063][00508] Policy head output size: 512
[2025-03-01 04:50:19,080][00508] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2025-03-01 04:50:19,515][00508] Num frames 100...
[2025-03-01 04:50:19,643][00508] Num frames 200...
[2025-03-01 04:50:19,775][00508] Num frames 300...
[2025-03-01 04:50:19,915][00508] Num frames 400...
[2025-03-01 04:50:20,044][00508] Num frames 500...
[2025-03-01 04:50:20,115][00508] Avg episode rewards: #0: 9.120, true rewards: #0: 5.120
[2025-03-01 04:50:20,117][00508] Avg episode reward: 9.120, avg true_objective: 5.120
[2025-03-01 04:50:20,236][00508] Num frames 600...
[2025-03-01 04:50:20,364][00508] Num frames 700...
[2025-03-01 04:50:20,494][00508] Num frames 800...
[2025-03-01 04:50:20,621][00508] Num frames 900...
[2025-03-01 04:50:20,749][00508] Num frames 1000...
[2025-03-01 04:50:20,887][00508] Num frames 1100...
[2025-03-01 04:50:21,015][00508] Num frames 1200...
[2025-03-01 04:50:21,143][00508] Num frames 1300...
[2025-03-01 04:50:21,271][00508] Num frames 1400...
[2025-03-01 04:50:21,398][00508] Num frames 1500...
[2025-03-01 04:50:21,566][00508] Avg episode rewards: #0: 16.930, true rewards: #0: 7.930
[2025-03-01 04:50:21,567][00508] Avg episode reward: 16.930, avg true_objective: 7.930
[2025-03-01 04:50:21,588][00508] Num frames 1600...
[2025-03-01 04:50:21,717][00508] Num frames 1700...
[2025-03-01 04:50:21,847][00508] Num frames 1800...
[2025-03-01 04:50:21,987][00508] Num frames 1900...
[2025-03-01 04:50:22,119][00508] Num frames 2000...
[2025-03-01 04:50:22,252][00508] Num frames 2100...
[2025-03-01 04:50:22,441][00508] Avg episode rewards: #0: 15.313, true rewards: #0: 7.313
[2025-03-01 04:50:22,442][00508] Avg episode reward: 15.313, avg true_objective: 7.313
[2025-03-01 04:50:22,452][00508] Num frames 2200...
[2025-03-01 04:50:22,579][00508] Num frames 2300...
[2025-03-01 04:50:22,709][00508] Num frames 2400...
[2025-03-01 04:50:22,837][00508] Num frames 2500...
[2025-03-01 04:50:22,973][00508] Num frames 2600...
[2025-03-01 04:50:23,097][00508] Num frames 2700...
[2025-03-01 04:50:23,226][00508] Num frames 2800...
[2025-03-01 04:50:23,353][00508] Num frames 2900...
[2025-03-01 04:50:23,480][00508] Num frames 3000...
[2025-03-01 04:50:23,604][00508] Num frames 3100...
[2025-03-01 04:50:23,732][00508] Num frames 3200...
[2025-03-01 04:50:23,861][00508] Num frames 3300...
[2025-03-01 04:50:23,998][00508] Num frames 3400...
[2025-03-01 04:50:24,059][00508] Avg episode rewards: #0: 19.008, true rewards: #0: 8.507
[2025-03-01 04:50:24,060][00508] Avg episode reward: 19.008, avg true_objective: 8.507
[2025-03-01 04:50:24,197][00508] Num frames 3500...
[2025-03-01 04:50:24,371][00508] Num frames 3600...
[2025-03-01 04:50:24,550][00508] Num frames 3700...
[2025-03-01 04:50:24,718][00508] Num frames 3800...
[2025-03-01 04:50:24,885][00508] Num frames 3900...
[2025-03-01 04:50:25,064][00508] Num frames 4000...
[2025-03-01 04:50:25,250][00508] Avg episode rewards: #0: 17.550, true rewards: #0: 8.150
[2025-03-01 04:50:25,254][00508] Avg episode reward: 17.550, avg true_objective: 8.150
[2025-03-01 04:50:25,297][00508] Num frames 4100...
[2025-03-01 04:50:25,465][00508] Num frames 4200...
[2025-03-01 04:50:25,639][00508] Num frames 4300...
[2025-03-01 04:50:25,826][00508] Num frames 4400...
[2025-03-01 04:50:26,012][00508] Num frames 4500...
[2025-03-01 04:50:26,174][00508] Num frames 4600...
[2025-03-01 04:50:26,300][00508] Num frames 4700...
[2025-03-01 04:50:26,431][00508] Num frames 4800...
[2025-03-01 04:50:26,557][00508] Num frames 4900...
[2025-03-01 04:50:26,684][00508] Num frames 5000...
[2025-03-01 04:50:26,811][00508] Num frames 5100...
[2025-03-01 04:50:26,942][00508] Num frames 5200...
[2025-03-01 04:50:27,080][00508] Num frames 5300...
[2025-03-01 04:50:27,168][00508] Avg episode rewards: #0: 19.540, true rewards: #0: 8.873
[2025-03-01 04:50:27,169][00508] Avg episode reward: 19.540, avg true_objective: 8.873
[2025-03-01 04:50:27,269][00508] Num frames 5400...
[2025-03-01 04:50:27,394][00508] Num frames 5500...
[2025-03-01 04:50:27,521][00508] Num frames 5600...
[2025-03-01 04:50:27,647][00508] Num frames 5700...
[2025-03-01 04:50:27,774][00508] Num frames 5800...
[2025-03-01 04:50:27,903][00508] Num frames 5900...
[2025-03-01 04:50:28,032][00508] Num frames 6000...
[2025-03-01 04:50:28,174][00508] Num frames 6100...
[2025-03-01 04:50:28,306][00508] Num frames 6200...
[2025-03-01 04:50:28,436][00508] Num frames 6300...
[2025-03-01 04:50:28,511][00508] Avg episode rewards: #0: 19.880, true rewards: #0: 9.023
[2025-03-01 04:50:28,512][00508] Avg episode reward: 19.880, avg true_objective: 9.023
[2025-03-01 04:50:28,618][00508] Num frames 6400...
[2025-03-01 04:50:28,744][00508] Num frames 6500...
[2025-03-01 04:50:28,874][00508] Num frames 6600...
[2025-03-01 04:50:29,003][00508] Num frames 6700...
[2025-03-01 04:50:29,143][00508] Num frames 6800...
[2025-03-01 04:50:29,269][00508] Num frames 6900...
[2025-03-01 04:50:29,355][00508] Avg episode rewards: #0: 18.530, true rewards: #0: 8.655
[2025-03-01 04:50:29,356][00508] Avg episode reward: 18.530, avg true_objective: 8.655
[2025-03-01 04:50:29,456][00508] Num frames 7000...
[2025-03-01 04:50:29,586][00508] Num frames 7100...
[2025-03-01 04:50:29,716][00508] Num frames 7200...
[2025-03-01 04:50:29,850][00508] Num frames 7300...
[2025-03-01 04:50:29,979][00508] Num frames 7400...
[2025-03-01 04:50:30,108][00508] Num frames 7500...
[2025-03-01 04:50:30,247][00508] Num frames 7600...
[2025-03-01 04:50:30,385][00508] Num frames 7700...
[2025-03-01 04:50:30,474][00508] Avg episode rewards: #0: 18.472, true rewards: #0: 8.583
[2025-03-01 04:50:30,475][00508] Avg episode reward: 18.472, avg true_objective: 8.583
[2025-03-01 04:50:30,571][00508] Num frames 7800...
[2025-03-01 04:50:30,704][00508] Num frames 7900...
[2025-03-01 04:50:30,834][00508] Num frames 8000...
[2025-03-01 04:50:30,970][00508] Num frames 8100...
[2025-03-01 04:50:31,131][00508] Num frames 8200...
[2025-03-01 04:50:31,271][00508] Num frames 8300...
[2025-03-01 04:50:31,404][00508] Num frames 8400...
[2025-03-01 04:50:31,537][00508] Num frames 8500...
[2025-03-01 04:50:31,669][00508] Num frames 8600...
[2025-03-01 04:50:31,804][00508] Num frames 8700...
[2025-03-01 04:50:31,916][00508] Avg episode rewards: #0: 19.142, true rewards: #0: 8.742
[2025-03-01 04:50:31,917][00508] Avg episode reward: 19.142, avg true_objective: 8.742
[2025-03-01 04:51:27,145][00508] Replay video saved to /content/train_dir/default_experiment/replay.mp4!