--- license: apache-2.0 tags: - merge - mergekit - mistral - SanjiWatsuki/Silicon-Maid-7B - senseable/WestLake-7B-v2 base_model: - SanjiWatsuki/Silicon-Maid-7B - senseable/WestLake-7B-v2 model-index: - name: RolePlayLake-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.56 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.38 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B name: Open LLM Leaderboard --- # RolePlayLake-7B RolePlayLake-7B is a merge of the following models : * [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) * [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) `In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake` `I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct ` ## 🧩 Configuration ```yaml slices: - sources: - model: SanjiWatsuki/Silicon-Maid-7B layer_range: [0, 32] - model: senseable/WestLake-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: senseable/WestLake-7B-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fhai50032/RolePlayLake-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # Why I Merged WestLake and Silicon Maid Merged WestLake and Silicon Maid for a unique blend: 1. **EQ-Bench Dominance:** WestLake's 79.75 EQ-Bench score. (Maybe Contaminated) 2. **Charm and Role-Play:** Silicon's explicit charm and WestLake's role-play prowess. 3. **Config Synergy:** Supports lots of prompt format out of the gate and has a very nice synergy Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B) | Metric |Value| |---------------------------------|----:| |Avg. |72.54| |AI2 Reasoning Challenge (25-Shot)|70.56| |HellaSwag (10-Shot) |87.42| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |64.38| |Winogrande (5-shot) |83.27| |GSM8k (5-shot) |65.05|