Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1069 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +93 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: aubmindlab/bert-base-arabertv02
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
metrics:
|
| 5 |
+
- pearson_cosine
|
| 6 |
+
- spearman_cosine
|
| 7 |
+
- pearson_manhattan
|
| 8 |
+
- spearman_manhattan
|
| 9 |
+
- pearson_euclidean
|
| 10 |
+
- spearman_euclidean
|
| 11 |
+
- pearson_dot
|
| 12 |
+
- spearman_dot
|
| 13 |
+
- pearson_max
|
| 14 |
+
- spearman_max
|
| 15 |
+
pipeline_tag: sentence-similarity
|
| 16 |
+
tags:
|
| 17 |
+
- sentence-transformers
|
| 18 |
+
- sentence-similarity
|
| 19 |
+
- feature-extraction
|
| 20 |
+
- generated_from_trainer
|
| 21 |
+
- dataset_size:2279719
|
| 22 |
+
- loss:MatryoshkaLoss
|
| 23 |
+
- loss:MultipleNegativesRankingLoss
|
| 24 |
+
widget:
|
| 25 |
+
- source_sentence: ما هو علاج الفطريات الجلدية؟
|
| 26 |
+
sentences:
|
| 27 |
+
- كيف سيؤثر ذلك على الطلاب الهنود الذين يدرسون أو يعملون في الولايات المتحدة إذا
|
| 28 |
+
أصبح ترامب رئيساً؟
|
| 29 |
+
- كيف يمكنك معالجة الأكزيما بشكل طبيعي؟
|
| 30 |
+
- كيف تعالج الفطريات الجلدية؟
|
| 31 |
+
- source_sentence: 'So Eric had an initial design idea for a robot, but we didn''t
|
| 32 |
+
have all the parts figured out, so we did what anybody would do in our situation:
|
| 33 |
+
we asked the Internet for help.'
|
| 34 |
+
sentences:
|
| 35 |
+
- وهكذا أول شيء فعلناه هو , بمجرد أن التسلسل خرج من الماكينات , نشرناه على الإنترنت
|
| 36 |
+
.
|
| 37 |
+
- وكانت لدى "إريك" فكرة مبدئية لصناعة روبوت، ولكن لم يكن لدينا فكرة عن القطع التي
|
| 38 |
+
نحتاجها لذلك قمنا بما يمكن أن يقوم به أي شخص بوضعنا قمنا بطلب المساعدة عبر الإنترنت
|
| 39 |
+
- ما هي مواقع الويب التي يجب اتباعها لتوصيات الأسهم خلال اليوم في سوق الأسهم الهندية؟
|
| 40 |
+
- source_sentence: Well, guess what? In England, it's seven per 100,000.
|
| 41 |
+
sentences:
|
| 42 |
+
- عندما نكون أطفالًا، نتعلم الضحك، ونتعلم الضحك بشكل أساسي في اللعب.
|
| 43 |
+
- هذا ليس 10000 دولارا، إنه بالعملة المحلية .
|
| 44 |
+
- خمنوا ماذا؟ في إنكلترا، النسبة سبع في كل 000 100.
|
| 45 |
+
- source_sentence: ما هي العوامل الحيوية وغير الحيوية؟ كيف تختلف عن بعضها البعض؟
|
| 46 |
+
sentences:
|
| 47 |
+
- ما هي بعض النصائح لتعلم لغة بايثون؟
|
| 48 |
+
- كما تم تسجيل نتائج إيجابية لثلاثة أيام متتالية.
|
| 49 |
+
- كيف تقارن العوامل الحيوية والعوامل غير الحيوية وتتناقض؟
|
| 50 |
+
- source_sentence: And the piece of art he bought at the yard sale is hanging in his
|
| 51 |
+
classroom; he's a teacher now.
|
| 52 |
+
sentences:
|
| 53 |
+
- هل الرياضيات لغة أخرى؟
|
| 54 |
+
- تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.
|
| 55 |
+
- أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد أصبح مدرّساً.
|
| 56 |
+
model-index:
|
| 57 |
+
- name: SentenceTransformer based on aubmindlab/bert-base-arabertv02
|
| 58 |
+
results:
|
| 59 |
+
- task:
|
| 60 |
+
type: semantic-similarity
|
| 61 |
+
name: Semantic Similarity
|
| 62 |
+
dataset:
|
| 63 |
+
name: sts dev 768
|
| 64 |
+
type: sts-dev-768
|
| 65 |
+
metrics:
|
| 66 |
+
- type: pearson_cosine
|
| 67 |
+
value: 0.8410341962006318
|
| 68 |
+
name: Pearson Cosine
|
| 69 |
+
- type: spearman_cosine
|
| 70 |
+
value: 0.8422963798504417
|
| 71 |
+
name: Spearman Cosine
|
| 72 |
+
- type: pearson_manhattan
|
| 73 |
+
value: 0.8119358373898954
|
| 74 |
+
name: Pearson Manhattan
|
| 75 |
+
- type: spearman_manhattan
|
| 76 |
+
value: 0.8260328397910858
|
| 77 |
+
name: Spearman Manhattan
|
| 78 |
+
- type: pearson_euclidean
|
| 79 |
+
value: 0.8138598024349573
|
| 80 |
+
name: Pearson Euclidean
|
| 81 |
+
- type: spearman_euclidean
|
| 82 |
+
value: 0.831707795171752
|
| 83 |
+
name: Spearman Euclidean
|
| 84 |
+
- type: pearson_dot
|
| 85 |
+
value: 0.8371709698109359
|
| 86 |
+
name: Pearson Dot
|
| 87 |
+
- type: spearman_dot
|
| 88 |
+
value: 0.8389681969788781
|
| 89 |
+
name: Spearman Dot
|
| 90 |
+
- type: pearson_max
|
| 91 |
+
value: 0.8410341962006318
|
| 92 |
+
name: Pearson Max
|
| 93 |
+
- type: spearman_max
|
| 94 |
+
value: 0.8422963798504417
|
| 95 |
+
name: Spearman Max
|
| 96 |
+
- task:
|
| 97 |
+
type: semantic-similarity
|
| 98 |
+
name: Semantic Similarity
|
| 99 |
+
dataset:
|
| 100 |
+
name: sts dev 512
|
| 101 |
+
type: sts-dev-512
|
| 102 |
+
metrics:
|
| 103 |
+
- type: pearson_cosine
|
| 104 |
+
value: 0.8408199016320912
|
| 105 |
+
name: Pearson Cosine
|
| 106 |
+
- type: spearman_cosine
|
| 107 |
+
value: 0.8415754271206667
|
| 108 |
+
name: Spearman Cosine
|
| 109 |
+
- type: pearson_manhattan
|
| 110 |
+
value: 0.8114852653680014
|
| 111 |
+
name: Pearson Manhattan
|
| 112 |
+
- type: spearman_manhattan
|
| 113 |
+
value: 0.8231951698466913
|
| 114 |
+
name: Spearman Manhattan
|
| 115 |
+
- type: pearson_euclidean
|
| 116 |
+
value: 0.8125911836775428
|
| 117 |
+
name: Pearson Euclidean
|
| 118 |
+
- type: spearman_euclidean
|
| 119 |
+
value: 0.8267107276111355
|
| 120 |
+
name: Spearman Euclidean
|
| 121 |
+
- type: pearson_dot
|
| 122 |
+
value: 0.8357223021732401
|
| 123 |
+
name: Pearson Dot
|
| 124 |
+
- type: spearman_dot
|
| 125 |
+
value: 0.8377004761329118
|
| 126 |
+
name: Spearman Dot
|
| 127 |
+
- type: pearson_max
|
| 128 |
+
value: 0.8408199016320912
|
| 129 |
+
name: Pearson Max
|
| 130 |
+
- type: spearman_max
|
| 131 |
+
value: 0.8415754271206667
|
| 132 |
+
name: Spearman Max
|
| 133 |
+
---
|
| 134 |
+
|
| 135 |
+
# SentenceTransformer based on aubmindlab/bert-base-arabertv02
|
| 136 |
+
|
| 137 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 138 |
+
|
| 139 |
+
## Model Details
|
| 140 |
+
|
| 141 |
+
### Model Description
|
| 142 |
+
- **Model Type:** Sentence Transformer
|
| 143 |
+
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 -->
|
| 144 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 145 |
+
- **Output Dimensionality:** 768 tokens
|
| 146 |
+
- **Similarity Function:** Cosine Similarity
|
| 147 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 148 |
+
<!-- - **Language:** Unknown -->
|
| 149 |
+
<!-- - **License:** Unknown -->
|
| 150 |
+
|
| 151 |
+
### Model Sources
|
| 152 |
+
|
| 153 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 154 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 155 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 156 |
+
|
| 157 |
+
### Full Model Architecture
|
| 158 |
+
|
| 159 |
+
```
|
| 160 |
+
SentenceTransformer(
|
| 161 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 162 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 163 |
+
)
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
## Usage
|
| 167 |
+
|
| 168 |
+
### Direct Usage (Sentence Transformers)
|
| 169 |
+
|
| 170 |
+
First install the Sentence Transformers library:
|
| 171 |
+
|
| 172 |
+
```bash
|
| 173 |
+
pip install -U sentence-transformers
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
Then you can load this model and run inference.
|
| 177 |
+
```python
|
| 178 |
+
from sentence_transformers import SentenceTransformer
|
| 179 |
+
|
| 180 |
+
# Download from the 🤗 Hub
|
| 181 |
+
model = SentenceTransformer("silma-ai/silma-embeddding-matryoshka-0.1")
|
| 182 |
+
# Run inference
|
| 183 |
+
sentences = [
|
| 184 |
+
"And the piece of art he bought at the yard sale is hanging in his classroom; he's a teacher now.",
|
| 185 |
+
'أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد أصبح مدرّساً.',
|
| 186 |
+
'تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.',
|
| 187 |
+
]
|
| 188 |
+
embeddings = model.encode(sentences)
|
| 189 |
+
print(embeddings.shape)
|
| 190 |
+
# [3, 768]
|
| 191 |
+
|
| 192 |
+
# Get the similarity scores for the embeddings
|
| 193 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 194 |
+
print(similarities.shape)
|
| 195 |
+
# [3, 3]
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
<!--
|
| 199 |
+
### Direct Usage (Transformers)
|
| 200 |
+
|
| 201 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 202 |
+
|
| 203 |
+
</details>
|
| 204 |
+
-->
|
| 205 |
+
|
| 206 |
+
<!--
|
| 207 |
+
### Downstream Usage (Sentence Transformers)
|
| 208 |
+
|
| 209 |
+
You can finetune this model on your own dataset.
|
| 210 |
+
|
| 211 |
+
<details><summary>Click to expand</summary>
|
| 212 |
+
|
| 213 |
+
</details>
|
| 214 |
+
-->
|
| 215 |
+
|
| 216 |
+
<!--
|
| 217 |
+
### Out-of-Scope Use
|
| 218 |
+
|
| 219 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 220 |
+
-->
|
| 221 |
+
|
| 222 |
+
## Evaluation
|
| 223 |
+
|
| 224 |
+
### Metrics
|
| 225 |
+
|
| 226 |
+
#### Semantic Similarity
|
| 227 |
+
* Dataset: `sts-dev-768`
|
| 228 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 229 |
+
|
| 230 |
+
| Metric | Value |
|
| 231 |
+
|:--------------------|:-----------|
|
| 232 |
+
| pearson_cosine | 0.841 |
|
| 233 |
+
| **spearman_cosine** | **0.8423** |
|
| 234 |
+
| pearson_manhattan | 0.8119 |
|
| 235 |
+
| spearman_manhattan | 0.826 |
|
| 236 |
+
| pearson_euclidean | 0.8139 |
|
| 237 |
+
| spearman_euclidean | 0.8317 |
|
| 238 |
+
| pearson_dot | 0.8372 |
|
| 239 |
+
| spearman_dot | 0.839 |
|
| 240 |
+
| pearson_max | 0.841 |
|
| 241 |
+
| spearman_max | 0.8423 |
|
| 242 |
+
|
| 243 |
+
#### Semantic Similarity
|
| 244 |
+
* Dataset: `sts-dev-512`
|
| 245 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 246 |
+
|
| 247 |
+
| Metric | Value |
|
| 248 |
+
|:--------------------|:-----------|
|
| 249 |
+
| pearson_cosine | 0.8408 |
|
| 250 |
+
| **spearman_cosine** | **0.8416** |
|
| 251 |
+
| pearson_manhattan | 0.8115 |
|
| 252 |
+
| spearman_manhattan | 0.8232 |
|
| 253 |
+
| pearson_euclidean | 0.8126 |
|
| 254 |
+
| spearman_euclidean | 0.8267 |
|
| 255 |
+
| pearson_dot | 0.8357 |
|
| 256 |
+
| spearman_dot | 0.8377 |
|
| 257 |
+
| pearson_max | 0.8408 |
|
| 258 |
+
| spearman_max | 0.8416 |
|
| 259 |
+
|
| 260 |
+
<!--
|
| 261 |
+
## Bias, Risks and Limitations
|
| 262 |
+
|
| 263 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 264 |
+
-->
|
| 265 |
+
|
| 266 |
+
<!--
|
| 267 |
+
### Recommendations
|
| 268 |
+
|
| 269 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 270 |
+
-->
|
| 271 |
+
|
| 272 |
+
## Training Details
|
| 273 |
+
|
| 274 |
+
### Training Dataset
|
| 275 |
+
|
| 276 |
+
#### Unnamed Dataset
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
* Size: 2,279,719 training samples
|
| 280 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 281 |
+
* Approximate statistics based on the first 1000 samples:
|
| 282 |
+
| | anchor | positive | negative |
|
| 283 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 284 |
+
| type | string | string | string |
|
| 285 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 19.51 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.47 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.13 tokens</li><li>max: 72 tokens</li></ul> |
|
| 286 |
+
* Samples:
|
| 287 |
+
| anchor | positive | negative |
|
| 288 |
+
|:-------------------------------------------------------------------|:------------------------------------------------|:--------------------------------------------------------|
|
| 289 |
+
| <code>كيف أصنع صاروخاً؟</code> | <code>كيف أصنع صاروخاً صناعياً؟</code> | <code>كيف أصنع أول روبوت لي؟</code> |
|
| 290 |
+
| <code>فتاة شابة تجلس على طاولة مع وعاء على رأسها</code> | <code>فتاة صغيرة لديها وعاء على رأسها</code> | <code>رجل يأكل الحبوب في سيارته</code> |
|
| 291 |
+
| <code>كيف يمكنني الانضمام إلى الجيش الهندي بعد البكالوريوس؟</code> | <code>كيف تنضم للجيش الهندي بعد الهندسة؟</code> | <code>كيف لي أن أعرف ماذا أريد أن أفعل في حياتي؟</code> |
|
| 292 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 293 |
+
```json
|
| 294 |
+
{
|
| 295 |
+
"loss": "MultipleNegativesRankingLoss",
|
| 296 |
+
"matryoshka_dims": [
|
| 297 |
+
768,
|
| 298 |
+
512
|
| 299 |
+
],
|
| 300 |
+
"matryoshka_weights": [
|
| 301 |
+
1,
|
| 302 |
+
1
|
| 303 |
+
],
|
| 304 |
+
"n_dims_per_step": -1
|
| 305 |
+
}
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
### Evaluation Dataset
|
| 309 |
+
|
| 310 |
+
#### Unnamed Dataset
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
* Size: 600 evaluation samples
|
| 314 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 315 |
+
* Approximate statistics based on the first 600 samples:
|
| 316 |
+
| | anchor | positive | negative |
|
| 317 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 318 |
+
| type | string | string | string |
|
| 319 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 19.5 tokens</li><li>max: 146 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.67 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.15 tokens</li><li>max: 41 tokens</li></ul> |
|
| 320 |
+
* Samples:
|
| 321 |
+
| anchor | positive | negative |
|
| 322 |
+
|:-------------------------------------------------------------|:------------------------------------------------|:-----------------------------------------------------------------|
|
| 323 |
+
| <code>And this explanation represents great progress.</code> | <code>وهذا التفسير يمثل تقدماً عظيماً</code> | <code>وأظهرت هذا الإتجاه المذهل.</code> |
|
| 324 |
+
| <code>ثلاثة رجال يلعبون كرة السلة</code> | <code>ثلاثة رجال يلعبون لعبة كرة السلة</code> | <code>رجلين يرتديان ملابس غريبة يقفزان على ملعب كرة السلة</code> |
|
| 325 |
+
| <code>الرجل جالس</code> | <code>رجل يرتدي قميصاً أحمر يعزف الطبول.</code> | <code>رجل في قميص رمادي يقف.</code> |
|
| 326 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 327 |
+
```json
|
| 328 |
+
{
|
| 329 |
+
"loss": "MultipleNegativesRankingLoss",
|
| 330 |
+
"matryoshka_dims": [
|
| 331 |
+
768,
|
| 332 |
+
512
|
| 333 |
+
],
|
| 334 |
+
"matryoshka_weights": [
|
| 335 |
+
1,
|
| 336 |
+
1
|
| 337 |
+
],
|
| 338 |
+
"n_dims_per_step": -1
|
| 339 |
+
}
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
### Training Hyperparameters
|
| 343 |
+
#### Non-Default Hyperparameters
|
| 344 |
+
|
| 345 |
+
- `eval_strategy`: steps
|
| 346 |
+
- `per_device_train_batch_size`: 50
|
| 347 |
+
- `per_device_eval_batch_size`: 10
|
| 348 |
+
- `learning_rate`: 1e-05
|
| 349 |
+
- `bf16`: True
|
| 350 |
+
- `batch_sampler`: no_duplicates
|
| 351 |
+
|
| 352 |
+
#### All Hyperparameters
|
| 353 |
+
<details><summary>Click to expand</summary>
|
| 354 |
+
|
| 355 |
+
- `overwrite_output_dir`: False
|
| 356 |
+
- `do_predict`: False
|
| 357 |
+
- `eval_strategy`: steps
|
| 358 |
+
- `prediction_loss_only`: True
|
| 359 |
+
- `per_device_train_batch_size`: 50
|
| 360 |
+
- `per_device_eval_batch_size`: 10
|
| 361 |
+
- `per_gpu_train_batch_size`: None
|
| 362 |
+
- `per_gpu_eval_batch_size`: None
|
| 363 |
+
- `gradient_accumulation_steps`: 1
|
| 364 |
+
- `eval_accumulation_steps`: None
|
| 365 |
+
- `torch_empty_cache_steps`: None
|
| 366 |
+
- `learning_rate`: 1e-05
|
| 367 |
+
- `weight_decay`: 0.0
|
| 368 |
+
- `adam_beta1`: 0.9
|
| 369 |
+
- `adam_beta2`: 0.999
|
| 370 |
+
- `adam_epsilon`: 1e-08
|
| 371 |
+
- `max_grad_norm`: 1.0
|
| 372 |
+
- `num_train_epochs`: 3
|
| 373 |
+
- `max_steps`: -1
|
| 374 |
+
- `lr_scheduler_type`: linear
|
| 375 |
+
- `lr_scheduler_kwargs`: {}
|
| 376 |
+
- `warmup_ratio`: 0.0
|
| 377 |
+
- `warmup_steps`: 0
|
| 378 |
+
- `log_level`: passive
|
| 379 |
+
- `log_level_replica`: warning
|
| 380 |
+
- `log_on_each_node`: True
|
| 381 |
+
- `logging_nan_inf_filter`: True
|
| 382 |
+
- `save_safetensors`: True
|
| 383 |
+
- `save_on_each_node`: False
|
| 384 |
+
- `save_only_model`: False
|
| 385 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 386 |
+
- `no_cuda`: False
|
| 387 |
+
- `use_cpu`: False
|
| 388 |
+
- `use_mps_device`: False
|
| 389 |
+
- `seed`: 42
|
| 390 |
+
- `data_seed`: None
|
| 391 |
+
- `jit_mode_eval`: False
|
| 392 |
+
- `use_ipex`: False
|
| 393 |
+
- `bf16`: True
|
| 394 |
+
- `fp16`: False
|
| 395 |
+
- `fp16_opt_level`: O1
|
| 396 |
+
- `half_precision_backend`: auto
|
| 397 |
+
- `bf16_full_eval`: False
|
| 398 |
+
- `fp16_full_eval`: False
|
| 399 |
+
- `tf32`: None
|
| 400 |
+
- `local_rank`: 0
|
| 401 |
+
- `ddp_backend`: None
|
| 402 |
+
- `tpu_num_cores`: None
|
| 403 |
+
- `tpu_metrics_debug`: False
|
| 404 |
+
- `debug`: []
|
| 405 |
+
- `dataloader_drop_last`: True
|
| 406 |
+
- `dataloader_num_workers`: 0
|
| 407 |
+
- `dataloader_prefetch_factor`: None
|
| 408 |
+
- `past_index`: -1
|
| 409 |
+
- `disable_tqdm`: False
|
| 410 |
+
- `remove_unused_columns`: True
|
| 411 |
+
- `label_names`: None
|
| 412 |
+
- `load_best_model_at_end`: False
|
| 413 |
+
- `ignore_data_skip`: False
|
| 414 |
+
- `fsdp`: []
|
| 415 |
+
- `fsdp_min_num_params`: 0
|
| 416 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 417 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 418 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 419 |
+
- `deepspeed`: None
|
| 420 |
+
- `label_smoothing_factor`: 0.0
|
| 421 |
+
- `optim`: adamw_torch
|
| 422 |
+
- `optim_args`: None
|
| 423 |
+
- `adafactor`: False
|
| 424 |
+
- `group_by_length`: False
|
| 425 |
+
- `length_column_name`: length
|
| 426 |
+
- `ddp_find_unused_parameters`: None
|
| 427 |
+
- `ddp_bucket_cap_mb`: None
|
| 428 |
+
- `ddp_broadcast_buffers`: False
|
| 429 |
+
- `dataloader_pin_memory`: True
|
| 430 |
+
- `dataloader_persistent_workers`: False
|
| 431 |
+
- `skip_memory_metrics`: True
|
| 432 |
+
- `use_legacy_prediction_loop`: False
|
| 433 |
+
- `push_to_hub`: False
|
| 434 |
+
- `resume_from_checkpoint`: None
|
| 435 |
+
- `hub_model_id`: None
|
| 436 |
+
- `hub_strategy`: every_save
|
| 437 |
+
- `hub_private_repo`: False
|
| 438 |
+
- `hub_always_push`: False
|
| 439 |
+
- `gradient_checkpointing`: False
|
| 440 |
+
- `gradient_checkpointing_kwargs`: None
|
| 441 |
+
- `include_inputs_for_metrics`: False
|
| 442 |
+
- `eval_do_concat_batches`: True
|
| 443 |
+
- `fp16_backend`: auto
|
| 444 |
+
- `push_to_hub_model_id`: None
|
| 445 |
+
- `push_to_hub_organization`: None
|
| 446 |
+
- `mp_parameters`:
|
| 447 |
+
- `auto_find_batch_size`: False
|
| 448 |
+
- `full_determinism`: False
|
| 449 |
+
- `torchdynamo`: None
|
| 450 |
+
- `ray_scope`: last
|
| 451 |
+
- `ddp_timeout`: 1800
|
| 452 |
+
- `torch_compile`: False
|
| 453 |
+
- `torch_compile_backend`: None
|
| 454 |
+
- `torch_compile_mode`: None
|
| 455 |
+
- `dispatch_batches`: None
|
| 456 |
+
- `split_batches`: None
|
| 457 |
+
- `include_tokens_per_second`: False
|
| 458 |
+
- `include_num_input_tokens_seen`: False
|
| 459 |
+
- `neftune_noise_alpha`: None
|
| 460 |
+
- `optim_target_modules`: None
|
| 461 |
+
- `batch_eval_metrics`: False
|
| 462 |
+
- `eval_on_start`: False
|
| 463 |
+
- `use_liger_kernel`: False
|
| 464 |
+
- `eval_use_gather_object`: False
|
| 465 |
+
- `batch_sampler`: no_duplicates
|
| 466 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 467 |
+
|
| 468 |
+
</details>
|
| 469 |
+
|
| 470 |
+
### Training Logs
|
| 471 |
+
<details><summary>Click to expand</summary>
|
| 472 |
+
|
| 473 |
+
| Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine |
|
| 474 |
+
|:------:|:-----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
|
| 475 |
+
| 0.0044 | 50 | - | 0.7749 | 0.7784 | 0.7748 |
|
| 476 |
+
| 0.0088 | 100 | - | 0.6231 | 0.7854 | 0.7809 |
|
| 477 |
+
| 0.0132 | 150 | - | 0.5326 | 0.8028 | 0.7992 |
|
| 478 |
+
| 0.0175 | 200 | - | 0.4880 | 0.8103 | 0.8047 |
|
| 479 |
+
| 0.0219 | 250 | 1.1802 | 0.4398 | 0.8084 | 0.8043 |
|
| 480 |
+
| 0.0263 | 300 | - | 0.4203 | 0.8108 | 0.8058 |
|
| 481 |
+
| 0.0307 | 350 | - | 0.3880 | 0.8134 | 0.8075 |
|
| 482 |
+
| 0.0351 | 400 | - | 0.3998 | 0.8180 | 0.8145 |
|
| 483 |
+
| 0.0395 | 450 | - | 0.3840 | 0.8154 | 0.8114 |
|
| 484 |
+
| 0.0439 | 500 | 0.7483 | 0.3804 | 0.8105 | 0.8056 |
|
| 485 |
+
| 0.0483 | 550 | - | 0.3695 | 0.8147 | 0.8103 |
|
| 486 |
+
| 0.0526 | 600 | - | 0.3649 | 0.8145 | 0.8101 |
|
| 487 |
+
| 0.0570 | 650 | - | 0.3494 | 0.8192 | 0.8157 |
|
| 488 |
+
| 0.0614 | 700 | - | 0.3437 | 0.8159 | 0.8106 |
|
| 489 |
+
| 0.0658 | 750 | 0.6561 | 0.3302 | 0.8158 | 0.8104 |
|
| 490 |
+
| 0.0702 | 800 | - | 0.3359 | 0.8204 | 0.8174 |
|
| 491 |
+
| 0.0746 | 850 | - | 0.3446 | 0.8119 | 0.8094 |
|
| 492 |
+
| 0.0790 | 900 | - | 0.3419 | 0.8265 | 0.8252 |
|
| 493 |
+
| 0.0833 | 950 | - | 0.3197 | 0.8177 | 0.8141 |
|
| 494 |
+
| 0.0877 | 1000 | 0.6178 | 0.3250 | 0.8213 | 0.8185 |
|
| 495 |
+
| 0.0921 | 1050 | - | 0.3017 | 0.8161 | 0.8127 |
|
| 496 |
+
| 0.0965 | 1100 | - | 0.3058 | 0.8232 | 0.8180 |
|
| 497 |
+
| 0.1009 | 1150 | - | 0.3066 | 0.8236 | 0.8193 |
|
| 498 |
+
| 0.1053 | 1200 | - | 0.2924 | 0.8275 | 0.8237 |
|
| 499 |
+
| 0.1097 | 1250 | 0.5633 | 0.3096 | 0.8206 | 0.8173 |
|
| 500 |
+
| 0.1141 | 1300 | - | 0.3009 | 0.8299 | 0.8277 |
|
| 501 |
+
| 0.1184 | 1350 | - | 0.3067 | 0.8158 | 0.8111 |
|
| 502 |
+
| 0.1228 | 1400 | - | 0.2898 | 0.8215 | 0.8180 |
|
| 503 |
+
| 0.1272 | 1450 | - | 0.2810 | 0.8272 | 0.8261 |
|
| 504 |
+
| 0.1316 | 1500 | 0.5337 | 0.2810 | 0.8228 | 0.8187 |
|
| 505 |
+
| 0.1360 | 1550 | - | 0.2772 | 0.8167 | 0.8139 |
|
| 506 |
+
| 0.1404 | 1600 | - | 0.2772 | 0.8228 | 0.8194 |
|
| 507 |
+
| 0.1448 | 1650 | - | 0.2751 | 0.8193 | 0.8153 |
|
| 508 |
+
| 0.1491 | 1700 | - | 0.2579 | 0.8182 | 0.8147 |
|
| 509 |
+
| 0.1535 | 1750 | 0.5154 | 0.2542 | 0.8199 | 0.8166 |
|
| 510 |
+
| 0.1579 | 1800 | - | 0.2607 | 0.8243 | 0.8224 |
|
| 511 |
+
| 0.1623 | 1850 | - | 0.2595 | 0.8280 | 0.8254 |
|
| 512 |
+
| 0.1667 | 1900 | - | 0.2612 | 0.8272 | 0.8255 |
|
| 513 |
+
| 0.1711 | 1950 | - | 0.2644 | 0.8273 | 0.8242 |
|
| 514 |
+
| 0.1755 | 2000 | 0.4838 | 0.2618 | 0.8276 | 0.8246 |
|
| 515 |
+
| 0.1799 | 2050 | - | 0.2553 | 0.8219 | 0.8200 |
|
| 516 |
+
| 0.1842 | 2100 | - | 0.2581 | 0.8232 | 0.8217 |
|
| 517 |
+
| 0.1886 | 2150 | - | 0.2620 | 0.8254 | 0.8232 |
|
| 518 |
+
| 0.1930 | 2200 | - | 0.2627 | 0.8235 | 0.8193 |
|
| 519 |
+
| 0.1974 | 2250 | 0.486 | 0.2597 | 0.8170 | 0.8142 |
|
| 520 |
+
| 0.2018 | 2300 | - | 0.2605 | 0.8261 | 0.8231 |
|
| 521 |
+
| 0.2062 | 2350 | - | 0.2584 | 0.8252 | 0.8222 |
|
| 522 |
+
| 0.2106 | 2400 | - | 0.2663 | 0.8247 | 0.8228 |
|
| 523 |
+
| 0.2149 | 2450 | - | 0.2527 | 0.8285 | 0.8280 |
|
| 524 |
+
| 0.2193 | 2500 | 0.4523 | 0.2487 | 0.8291 | 0.8270 |
|
| 525 |
+
| 0.2237 | 2550 | - | 0.2524 | 0.8257 | 0.8244 |
|
| 526 |
+
| 0.2281 | 2600 | - | 0.2513 | 0.8228 | 0.8210 |
|
| 527 |
+
| 0.2325 | 2650 | - | 0.2531 | 0.8287 | 0.8265 |
|
| 528 |
+
| 0.2369 | 2700 | - | 0.2510 | 0.8224 | 0.8198 |
|
| 529 |
+
| 0.2413 | 2750 | 0.4522 | 0.2523 | 0.8275 | 0.8260 |
|
| 530 |
+
| 0.2457 | 2800 | - | 0.2563 | 0.8301 | 0.8278 |
|
| 531 |
+
| 0.2500 | 2850 | - | 0.2531 | 0.8242 | 0.8242 |
|
| 532 |
+
| 0.2544 | 2900 | - | 0.2527 | 0.8268 | 0.8268 |
|
| 533 |
+
| 0.2588 | 2950 | - | 0.2465 | 0.8228 | 0.8223 |
|
| 534 |
+
| 0.2632 | 3000 | 0.4472 | 0.2422 | 0.8263 | 0.8237 |
|
| 535 |
+
| 0.2676 | 3050 | - | 0.2484 | 0.8223 | 0.8195 |
|
| 536 |
+
| 0.2720 | 3100 | - | 0.2469 | 0.8209 | 0.8206 |
|
| 537 |
+
| 0.2764 | 3150 | - | 0.2419 | 0.8283 | 0.8281 |
|
| 538 |
+
| 0.2808 | 3200 | - | 0.2370 | 0.8303 | 0.8286 |
|
| 539 |
+
| 0.2851 | 3250 | 0.4499 | 0.2374 | 0.8293 | 0.8275 |
|
| 540 |
+
| 0.2895 | 3300 | - | 0.2340 | 0.8255 | 0.8255 |
|
| 541 |
+
| 0.2939 | 3350 | - | 0.2461 | 0.8277 | 0.8292 |
|
| 542 |
+
| 0.2983 | 3400 | - | 0.2421 | 0.8320 | 0.8307 |
|
| 543 |
+
| 0.3027 | 3450 | - | 0.2366 | 0.8286 | 0.8281 |
|
| 544 |
+
| 0.3071 | 3500 | 0.4305 | 0.2389 | 0.8312 | 0.8293 |
|
| 545 |
+
| 0.3115 | 3550 | - | 0.2360 | 0.8305 | 0.8310 |
|
| 546 |
+
| 0.3158 | 3600 | - | 0.2313 | 0.8271 | 0.8256 |
|
| 547 |
+
| 0.3202 | 3650 | - | 0.2182 | 0.8231 | 0.8197 |
|
| 548 |
+
| 0.3246 | 3700 | - | 0.2220 | 0.8274 | 0.8246 |
|
| 549 |
+
| 0.3290 | 3750 | 0.4221 | 0.2305 | 0.8301 | 0.8292 |
|
| 550 |
+
| 0.3334 | 3800 | - | 0.2244 | 0.8285 | 0.8265 |
|
| 551 |
+
| 0.3378 | 3850 | - | 0.2355 | 0.8349 | 0.8331 |
|
| 552 |
+
| 0.3422 | 3900 | - | 0.2256 | 0.8355 | 0.8330 |
|
| 553 |
+
| 0.3466 | 3950 | - | 0.2273 | 0.8330 | 0.8299 |
|
| 554 |
+
| 0.3509 | 4000 | 0.4203 | 0.2334 | 0.8304 | 0.8275 |
|
| 555 |
+
| 0.3553 | 4050 | - | 0.2223 | 0.8323 | 0.8305 |
|
| 556 |
+
| 0.3597 | 4100 | - | 0.2314 | 0.8323 | 0.8299 |
|
| 557 |
+
| 0.3641 | 4150 | - | 0.2196 | 0.8272 | 0.8244 |
|
| 558 |
+
| 0.3685 | 4200 | - | 0.2275 | 0.8342 | 0.8353 |
|
| 559 |
+
| 0.3729 | 4250 | 0.4039 | 0.2209 | 0.8348 | 0.8333 |
|
| 560 |
+
| 0.3773 | 4300 | - | 0.2152 | 0.8314 | 0.8307 |
|
| 561 |
+
| 0.3816 | 4350 | - | 0.2115 | 0.8353 | 0.8325 |
|
| 562 |
+
| 0.3860 | 4400 | - | 0.2195 | 0.8347 | 0.8310 |
|
| 563 |
+
| 0.3904 | 4450 | - | 0.2110 | 0.8293 | 0.8264 |
|
| 564 |
+
| 0.3948 | 4500 | 0.4065 | 0.2115 | 0.8321 | 0.8293 |
|
| 565 |
+
| 0.3992 | 4550 | - | 0.2139 | 0.8312 | 0.8286 |
|
| 566 |
+
| 0.4036 | 4600 | - | 0.2145 | 0.8319 | 0.8285 |
|
| 567 |
+
| 0.4080 | 4650 | - | 0.2127 | 0.8281 | 0.8255 |
|
| 568 |
+
| 0.4124 | 4700 | - | 0.2122 | 0.8292 | 0.8268 |
|
| 569 |
+
| 0.4167 | 4750 | 0.4019 | 0.2160 | 0.8354 | 0.8329 |
|
| 570 |
+
| 0.4211 | 4800 | - | 0.2069 | 0.8296 | 0.8258 |
|
| 571 |
+
| 0.4255 | 4850 | - | 0.2106 | 0.8362 | 0.8335 |
|
| 572 |
+
| 0.4299 | 4900 | - | 0.2130 | 0.8345 | 0.8321 |
|
| 573 |
+
| 0.4343 | 4950 | - | 0.2080 | 0.8307 | 0.8277 |
|
| 574 |
+
| 0.4387 | 5000 | 0.3941 | 0.2184 | 0.8394 | 0.8370 |
|
| 575 |
+
| 0.4431 | 5050 | - | 0.2061 | 0.8334 | 0.8325 |
|
| 576 |
+
| 0.4474 | 5100 | - | 0.2092 | 0.8318 | 0.8307 |
|
| 577 |
+
| 0.4518 | 5150 | - | 0.2108 | 0.8319 | 0.8289 |
|
| 578 |
+
| 0.4562 | 5200 | - | 0.2046 | 0.8359 | 0.8337 |
|
| 579 |
+
| 0.4606 | 5250 | 0.3873 | 0.1990 | 0.8327 | 0.8305 |
|
| 580 |
+
| 0.4650 | 5300 | - | 0.2007 | 0.8332 | 0.8305 |
|
| 581 |
+
| 0.4694 | 5350 | - | 0.1989 | 0.8284 | 0.8247 |
|
| 582 |
+
| 0.4738 | 5400 | - | 0.2117 | 0.8363 | 0.8346 |
|
| 583 |
+
| 0.4782 | 5450 | - | 0.2036 | 0.8329 | 0.8296 |
|
| 584 |
+
| 0.4825 | 5500 | 0.3808 | 0.1999 | 0.8341 | 0.8295 |
|
| 585 |
+
| 0.4869 | 5550 | - | 0.1998 | 0.8336 | 0.8300 |
|
| 586 |
+
| 0.4913 | 5600 | - | 0.2040 | 0.8348 | 0.8331 |
|
| 587 |
+
| 0.4957 | 5650 | - | 0.2068 | 0.8367 | 0.8346 |
|
| 588 |
+
| 0.5001 | 5700 | - | 0.1947 | 0.8333 | 0.8305 |
|
| 589 |
+
| 0.5045 | 5750 | 0.3779 | 0.1969 | 0.8352 | 0.8329 |
|
| 590 |
+
| 0.5089 | 5800 | - | 0.2028 | 0.8372 | 0.8369 |
|
| 591 |
+
| 0.5132 | 5850 | - | 0.2029 | 0.8336 | 0.8319 |
|
| 592 |
+
| 0.5176 | 5900 | - | 0.2029 | 0.8317 | 0.8309 |
|
| 593 |
+
| 0.5220 | 5950 | - | 0.2059 | 0.8270 | 0.8270 |
|
| 594 |
+
| 0.5264 | 6000 | 0.3704 | 0.1997 | 0.8263 | 0.8236 |
|
| 595 |
+
| 0.5308 | 6050 | - | 0.2001 | 0.8280 | 0.8252 |
|
| 596 |
+
| 0.5352 | 6100 | - | 0.1985 | 0.8275 | 0.8241 |
|
| 597 |
+
| 0.5396 | 6150 | - | 0.1976 | 0.8281 | 0.8281 |
|
| 598 |
+
| 0.5440 | 6200 | - | 0.1987 | 0.8270 | 0.8247 |
|
| 599 |
+
| 0.5483 | 6250 | 0.3722 | 0.2045 | 0.8320 | 0.8303 |
|
| 600 |
+
| 0.5527 | 6300 | - | 0.2013 | 0.8292 | 0.8278 |
|
| 601 |
+
| 0.5571 | 6350 | - | 0.2007 | 0.8302 | 0.8279 |
|
| 602 |
+
| 0.5615 | 6400 | - | 0.1949 | 0.8297 | 0.8274 |
|
| 603 |
+
| 0.5659 | 6450 | - | 0.2037 | 0.8335 | 0.8313 |
|
| 604 |
+
| 0.5703 | 6500 | 0.3638 | 0.2060 | 0.8316 | 0.8280 |
|
| 605 |
+
| 0.5747 | 6550 | - | 0.2030 | 0.8372 | 0.8348 |
|
| 606 |
+
| 0.5790 | 6600 | - | 0.1982 | 0.8317 | 0.8295 |
|
| 607 |
+
| 0.5834 | 6650 | - | 0.2075 | 0.8324 | 0.8325 |
|
| 608 |
+
| 0.5878 | 6700 | - | 0.2014 | 0.8306 | 0.8284 |
|
| 609 |
+
| 0.5922 | 6750 | 0.3581 | 0.1983 | 0.8360 | 0.8344 |
|
| 610 |
+
| 0.5966 | 6800 | - | 0.2007 | 0.8337 | 0.8313 |
|
| 611 |
+
| 0.6010 | 6850 | - | 0.2003 | 0.8349 | 0.8338 |
|
| 612 |
+
| 0.6054 | 6900 | - | 0.2018 | 0.8313 | 0.8305 |
|
| 613 |
+
| 0.6098 | 6950 | - | 0.1978 | 0.8323 | 0.8307 |
|
| 614 |
+
| 0.6141 | 7000 | 0.3596 | 0.1991 | 0.8370 | 0.8340 |
|
| 615 |
+
| 0.6185 | 7050 | - | 0.1963 | 0.8330 | 0.8302 |
|
| 616 |
+
| 0.6229 | 7100 | - | 0.1918 | 0.8334 | 0.8320 |
|
| 617 |
+
| 0.6273 | 7150 | - | 0.2008 | 0.8338 | 0.8327 |
|
| 618 |
+
| 0.6317 | 7200 | - | 0.1973 | 0.8320 | 0.8295 |
|
| 619 |
+
| 0.6361 | 7250 | 0.3614 | 0.1891 | 0.8339 | 0.8322 |
|
| 620 |
+
| 0.6405 | 7300 | - | 0.1961 | 0.8355 | 0.8332 |
|
| 621 |
+
| 0.6448 | 7350 | - | 0.1910 | 0.8322 | 0.8304 |
|
| 622 |
+
| 0.6492 | 7400 | - | 0.1926 | 0.8343 | 0.8331 |
|
| 623 |
+
| 0.6536 | 7450 | - | 0.1935 | 0.8310 | 0.8292 |
|
| 624 |
+
| 0.6580 | 7500 | 0.3513 | 0.1969 | 0.8337 | 0.8346 |
|
| 625 |
+
| 0.6624 | 7550 | - | 0.1891 | 0.8331 | 0.8311 |
|
| 626 |
+
| 0.6668 | 7600 | - | 0.1932 | 0.8369 | 0.8341 |
|
| 627 |
+
| 0.6712 | 7650 | - | 0.2041 | 0.8370 | 0.8357 |
|
| 628 |
+
| 0.6756 | 7700 | - | 0.1946 | 0.8335 | 0.8314 |
|
| 629 |
+
| 0.6799 | 7750 | 0.3426 | 0.1955 | 0.8364 | 0.8330 |
|
| 630 |
+
| 0.6843 | 7800 | - | 0.1940 | 0.8316 | 0.8307 |
|
| 631 |
+
| 0.6887 | 7850 | - | 0.1893 | 0.8323 | 0.8322 |
|
| 632 |
+
| 0.6931 | 7900 | - | 0.1839 | 0.8296 | 0.8286 |
|
| 633 |
+
| 0.6975 | 7950 | - | 0.1895 | 0.8321 | 0.8296 |
|
| 634 |
+
| 0.7019 | 8000 | 0.3406 | 0.1901 | 0.8277 | 0.8263 |
|
| 635 |
+
| 0.7063 | 8050 | - | 0.1835 | 0.8331 | 0.8284 |
|
| 636 |
+
| 0.7107 | 8100 | - | 0.1847 | 0.8359 | 0.8342 |
|
| 637 |
+
| 0.7150 | 8150 | - | 0.1892 | 0.8362 | 0.8348 |
|
| 638 |
+
| 0.7194 | 8200 | - | 0.1775 | 0.8339 | 0.8305 |
|
| 639 |
+
| 0.7238 | 8250 | 0.3357 | 0.1921 | 0.8359 | 0.8340 |
|
| 640 |
+
| 0.7282 | 8300 | - | 0.1881 | 0.8369 | 0.8344 |
|
| 641 |
+
| 0.7326 | 8350 | - | 0.1891 | 0.8371 | 0.8363 |
|
| 642 |
+
| 0.7370 | 8400 | - | 0.1880 | 0.8394 | 0.8364 |
|
| 643 |
+
| 0.7414 | 8450 | - | 0.1892 | 0.8348 | 0.8306 |
|
| 644 |
+
| 0.7457 | 8500 | 0.327 | 0.1868 | 0.8388 | 0.8353 |
|
| 645 |
+
| 0.7501 | 8550 | - | 0.1815 | 0.8378 | 0.8352 |
|
| 646 |
+
| 0.7545 | 8600 | - | 0.1877 | 0.8398 | 0.8370 |
|
| 647 |
+
| 0.7589 | 8650 | - | 0.1878 | 0.8392 | 0.8378 |
|
| 648 |
+
| 0.7633 | 8700 | - | 0.1778 | 0.8330 | 0.8304 |
|
| 649 |
+
| 0.7677 | 8750 | 0.3288 | 0.1791 | 0.8390 | 0.8360 |
|
| 650 |
+
| 0.7721 | 8800 | - | 0.1803 | 0.8298 | 0.8270 |
|
| 651 |
+
| 0.7765 | 8850 | - | 0.1803 | 0.8358 | 0.8323 |
|
| 652 |
+
| 0.7808 | 8900 | - | 0.1832 | 0.8330 | 0.8322 |
|
| 653 |
+
| 0.7852 | 8950 | - | 0.1767 | 0.8316 | 0.8286 |
|
| 654 |
+
| 0.7896 | 9000 | 0.329 | 0.1808 | 0.8283 | 0.8254 |
|
| 655 |
+
| 0.7940 | 9050 | - | 0.1842 | 0.8331 | 0.8293 |
|
| 656 |
+
| 0.7984 | 9100 | - | 0.1750 | 0.8304 | 0.8275 |
|
| 657 |
+
| 0.8028 | 9150 | - | 0.1779 | 0.8299 | 0.8270 |
|
| 658 |
+
| 0.8072 | 9200 | - | 0.1799 | 0.8332 | 0.8332 |
|
| 659 |
+
| 0.8115 | 9250 | 0.3283 | 0.1872 | 0.8399 | 0.8371 |
|
| 660 |
+
| 0.8159 | 9300 | - | 0.1842 | 0.8364 | 0.8352 |
|
| 661 |
+
| 0.8203 | 9350 | - | 0.1785 | 0.8415 | 0.8382 |
|
| 662 |
+
| 0.8247 | 9400 | - | 0.1822 | 0.8432 | 0.8407 |
|
| 663 |
+
| 0.8291 | 9450 | - | 0.1745 | 0.8380 | 0.8364 |
|
| 664 |
+
| 0.8335 | 9500 | 0.3271 | 0.1745 | 0.8374 | 0.8352 |
|
| 665 |
+
| 0.8379 | 9550 | - | 0.1746 | 0.8363 | 0.8332 |
|
| 666 |
+
| 0.8423 | 9600 | - | 0.1776 | 0.8391 | 0.8374 |
|
| 667 |
+
| 0.8466 | 9650 | - | 0.1760 | 0.8379 | 0.8353 |
|
| 668 |
+
| 0.8510 | 9700 | - | 0.1806 | 0.8360 | 0.8335 |
|
| 669 |
+
| 0.8554 | 9750 | 0.3309 | 0.1822 | 0.8368 | 0.8337 |
|
| 670 |
+
| 0.8598 | 9800 | - | 0.1765 | 0.8366 | 0.8336 |
|
| 671 |
+
| 0.8642 | 9850 | - | 0.1766 | 0.8353 | 0.8323 |
|
| 672 |
+
| 0.8686 | 9900 | - | 0.1698 | 0.8353 | 0.8315 |
|
| 673 |
+
| 0.8730 | 9950 | - | 0.1715 | 0.8378 | 0.8338 |
|
| 674 |
+
| 0.8773 | 10000 | 0.318 | 0.1782 | 0.8396 | 0.8357 |
|
| 675 |
+
| 0.8817 | 10050 | - | 0.1727 | 0.8382 | 0.8368 |
|
| 676 |
+
| 0.8861 | 10100 | - | 0.1740 | 0.8356 | 0.8330 |
|
| 677 |
+
| 0.8905 | 10150 | - | 0.1723 | 0.8347 | 0.8319 |
|
| 678 |
+
| 0.8949 | 10200 | - | 0.1656 | 0.8336 | 0.8314 |
|
| 679 |
+
| 0.8993 | 10250 | 0.3284 | 0.1742 | 0.8288 | 0.8264 |
|
| 680 |
+
| 0.9037 | 10300 | - | 0.1679 | 0.8315 | 0.8296 |
|
| 681 |
+
| 0.9081 | 10350 | - | 0.1694 | 0.8325 | 0.8296 |
|
| 682 |
+
| 0.9124 | 10400 | - | 0.1723 | 0.8319 | 0.8305 |
|
| 683 |
+
| 0.9168 | 10450 | - | 0.1638 | 0.8340 | 0.8310 |
|
| 684 |
+
| 0.9212 | 10500 | 0.313 | 0.1730 | 0.8371 | 0.8368 |
|
| 685 |
+
| 0.9256 | 10550 | - | 0.1639 | 0.8351 | 0.8327 |
|
| 686 |
+
| 0.9300 | 10600 | - | 0.1634 | 0.8379 | 0.8350 |
|
| 687 |
+
| 0.9344 | 10650 | - | 0.1745 | 0.8353 | 0.8340 |
|
| 688 |
+
| 0.9388 | 10700 | - | 0.1731 | 0.8349 | 0.8346 |
|
| 689 |
+
| 0.9431 | 10750 | 0.3145 | 0.1668 | 0.8333 | 0.8314 |
|
| 690 |
+
| 0.9475 | 10800 | - | 0.1653 | 0.8351 | 0.8338 |
|
| 691 |
+
| 0.9519 | 10850 | - | 0.1655 | 0.8401 | 0.8390 |
|
| 692 |
+
| 0.9563 | 10900 | - | 0.1708 | 0.8376 | 0.8360 |
|
| 693 |
+
| 0.9607 | 10950 | - | 0.1740 | 0.8382 | 0.8364 |
|
| 694 |
+
| 0.9651 | 11000 | 0.3002 | 0.1714 | 0.8401 | 0.8382 |
|
| 695 |
+
| 0.9695 | 11050 | - | 0.1647 | 0.8411 | 0.8393 |
|
| 696 |
+
| 0.9739 | 11100 | - | 0.1701 | 0.8418 | 0.8396 |
|
| 697 |
+
| 0.9782 | 11150 | - | 0.1665 | 0.8394 | 0.8379 |
|
| 698 |
+
| 0.9826 | 11200 | - | 0.1652 | 0.8377 | 0.8376 |
|
| 699 |
+
| 0.9870 | 11250 | 0.3094 | 0.1665 | 0.8408 | 0.8397 |
|
| 700 |
+
| 0.9914 | 11300 | - | 0.1689 | 0.8412 | 0.8393 |
|
| 701 |
+
| 0.9958 | 11350 | - | 0.1674 | 0.8400 | 0.8374 |
|
| 702 |
+
| 1.0002 | 11400 | - | 0.1694 | 0.8395 | 0.8376 |
|
| 703 |
+
| 1.0046 | 11450 | - | 0.1697 | 0.8434 | 0.8419 |
|
| 704 |
+
| 1.0089 | 11500 | 0.3004 | 0.1640 | 0.8399 | 0.8388 |
|
| 705 |
+
| 1.0133 | 11550 | - | 0.1731 | 0.8445 | 0.8426 |
|
| 706 |
+
| 1.0177 | 11600 | - | 0.1618 | 0.8430 | 0.8389 |
|
| 707 |
+
| 1.0221 | 11650 | - | 0.1646 | 0.8414 | 0.8377 |
|
| 708 |
+
| 1.0265 | 11700 | - | 0.1679 | 0.8435 | 0.8401 |
|
| 709 |
+
| 1.0309 | 11750 | 0.2984 | 0.1646 | 0.8413 | 0.8385 |
|
| 710 |
+
| 1.0353 | 11800 | - | 0.1797 | 0.8465 | 0.8432 |
|
| 711 |
+
| 1.0397 | 11850 | - | 0.1758 | 0.8393 | 0.8390 |
|
| 712 |
+
| 1.0440 | 11900 | - | 0.1690 | 0.8401 | 0.8379 |
|
| 713 |
+
| 1.0484 | 11950 | - | 0.1735 | 0.8423 | 0.8404 |
|
| 714 |
+
| 1.0528 | 12000 | 0.2896 | 0.1719 | 0.8384 | 0.8367 |
|
| 715 |
+
| 1.0572 | 12050 | - | 0.1759 | 0.8420 | 0.8403 |
|
| 716 |
+
| 1.0616 | 12100 | - | 0.1659 | 0.8360 | 0.8340 |
|
| 717 |
+
| 1.0660 | 12150 | - | 0.1645 | 0.8368 | 0.8362 |
|
| 718 |
+
| 1.0704 | 12200 | - | 0.1601 | 0.8380 | 0.8355 |
|
| 719 |
+
| 1.0747 | 12250 | 0.2954 | 0.1711 | 0.8406 | 0.8387 |
|
| 720 |
+
| 1.0791 | 12300 | - | 0.1691 | 0.8389 | 0.8370 |
|
| 721 |
+
| 1.0835 | 12350 | - | 0.1721 | 0.8397 | 0.8385 |
|
| 722 |
+
| 1.0879 | 12400 | - | 0.1689 | 0.8379 | 0.8351 |
|
| 723 |
+
| 1.0923 | 12450 | - | 0.1663 | 0.8424 | 0.8402 |
|
| 724 |
+
| 1.0967 | 12500 | 0.2864 | 0.1672 | 0.8418 | 0.8403 |
|
| 725 |
+
| 1.1011 | 12550 | - | 0.1689 | 0.8389 | 0.8386 |
|
| 726 |
+
| 1.1055 | 12600 | - | 0.1664 | 0.8410 | 0.8402 |
|
| 727 |
+
| 1.1098 | 12650 | - | 0.1685 | 0.8387 | 0.8376 |
|
| 728 |
+
| 1.1142 | 12700 | - | 0.1715 | 0.8419 | 0.8402 |
|
| 729 |
+
| 1.1186 | 12750 | 0.2745 | 0.1607 | 0.8373 | 0.8336 |
|
| 730 |
+
| 1.1230 | 12800 | - | 0.1620 | 0.8388 | 0.8379 |
|
| 731 |
+
| 1.1274 | 12850 | - | 0.1623 | 0.8417 | 0.8396 |
|
| 732 |
+
| 1.1318 | 12900 | - | 0.1589 | 0.8360 | 0.8342 |
|
| 733 |
+
| 1.1362 | 12950 | - | 0.1567 | 0.8300 | 0.8298 |
|
| 734 |
+
| 1.1406 | 13000 | 0.2768 | 0.1557 | 0.8406 | 0.8365 |
|
| 735 |
+
| 1.1449 | 13050 | - | 0.1581 | 0.8389 | 0.8363 |
|
| 736 |
+
| 1.1493 | 13100 | - | 0.1611 | 0.8399 | 0.8366 |
|
| 737 |
+
| 1.1537 | 13150 | - | 0.1583 | 0.8358 | 0.8348 |
|
| 738 |
+
| 1.1581 | 13200 | - | 0.1619 | 0.8405 | 0.8387 |
|
| 739 |
+
| 1.1625 | 13250 | 0.2737 | 0.1567 | 0.8373 | 0.8339 |
|
| 740 |
+
| 1.1669 | 13300 | - | 0.1642 | 0.8393 | 0.8374 |
|
| 741 |
+
| 1.1713 | 13350 | - | 0.1646 | 0.8404 | 0.8376 |
|
| 742 |
+
| 1.1756 | 13400 | - | 0.1601 | 0.8419 | 0.8402 |
|
| 743 |
+
| 1.1800 | 13450 | - | 0.1648 | 0.8412 | 0.8391 |
|
| 744 |
+
| 1.1844 | 13500 | 0.2627 | 0.1635 | 0.8403 | 0.8403 |
|
| 745 |
+
| 1.1888 | 13550 | - | 0.1662 | 0.8427 | 0.8407 |
|
| 746 |
+
| 1.1932 | 13600 | - | 0.1687 | 0.8381 | 0.8368 |
|
| 747 |
+
| 1.1976 | 13650 | - | 0.1693 | 0.8366 | 0.8365 |
|
| 748 |
+
| 1.2020 | 13700 | - | 0.1665 | 0.8410 | 0.8397 |
|
| 749 |
+
| 1.2064 | 13750 | 0.2738 | 0.1665 | 0.8373 | 0.8360 |
|
| 750 |
+
| 1.2107 | 13800 | - | 0.1667 | 0.8388 | 0.8389 |
|
| 751 |
+
| 1.2151 | 13850 | - | 0.1674 | 0.8455 | 0.8413 |
|
| 752 |
+
| 1.2195 | 13900 | - | 0.1704 | 0.8419 | 0.8382 |
|
| 753 |
+
| 1.2239 | 13950 | - | 0.1654 | 0.8417 | 0.8398 |
|
| 754 |
+
| 1.2283 | 14000 | 0.2563 | 0.1610 | 0.8414 | 0.8403 |
|
| 755 |
+
| 1.2327 | 14050 | - | 0.1625 | 0.8416 | 0.8380 |
|
| 756 |
+
| 1.2371 | 14100 | - | 0.1705 | 0.8411 | 0.8400 |
|
| 757 |
+
| 1.2414 | 14150 | - | 0.1628 | 0.8400 | 0.8384 |
|
| 758 |
+
| 1.2458 | 14200 | - | 0.1667 | 0.8448 | 0.8435 |
|
| 759 |
+
| 1.2502 | 14250 | 0.2693 | 0.1651 | 0.8406 | 0.8396 |
|
| 760 |
+
| 1.2546 | 14300 | - | 0.1673 | 0.8404 | 0.8388 |
|
| 761 |
+
| 1.2590 | 14350 | - | 0.1630 | 0.8392 | 0.8375 |
|
| 762 |
+
| 1.2634 | 14400 | - | 0.1633 | 0.8413 | 0.8403 |
|
| 763 |
+
| 1.2678 | 14450 | - | 0.1636 | 0.8412 | 0.8398 |
|
| 764 |
+
| 1.2722 | 14500 | 0.266 | 0.1613 | 0.8404 | 0.8379 |
|
| 765 |
+
| 1.2765 | 14550 | - | 0.1625 | 0.8392 | 0.8380 |
|
| 766 |
+
| 1.2809 | 14600 | - | 0.1634 | 0.8418 | 0.8397 |
|
| 767 |
+
| 1.2853 | 14650 | - | 0.1689 | 0.8426 | 0.8428 |
|
| 768 |
+
| 1.2897 | 14700 | - | 0.1617 | 0.8410 | 0.8405 |
|
| 769 |
+
| 1.2941 | 14750 | 0.2643 | 0.1661 | 0.8437 | 0.8417 |
|
| 770 |
+
| 1.2985 | 14800 | - | 0.1629 | 0.8409 | 0.8394 |
|
| 771 |
+
| 1.3029 | 14850 | - | 0.1584 | 0.8413 | 0.8387 |
|
| 772 |
+
| 1.3072 | 14900 | - | 0.1638 | 0.8446 | 0.8433 |
|
| 773 |
+
| 1.3116 | 14950 | - | 0.1644 | 0.8429 | 0.8426 |
|
| 774 |
+
| 1.3160 | 15000 | 0.2624 | 0.1570 | 0.8391 | 0.8386 |
|
| 775 |
+
| 1.3204 | 15050 | - | 0.1535 | 0.8367 | 0.8348 |
|
| 776 |
+
| 1.3248 | 15100 | - | 0.1591 | 0.8381 | 0.8367 |
|
| 777 |
+
| 1.3292 | 15150 | - | 0.1618 | 0.8421 | 0.8409 |
|
| 778 |
+
| 1.3336 | 15200 | - | 0.1554 | 0.8402 | 0.8381 |
|
| 779 |
+
| 1.3380 | 15250 | 0.2621 | 0.1595 | 0.8431 | 0.8427 |
|
| 780 |
+
| 1.3423 | 15300 | - | 0.1595 | 0.8447 | 0.8435 |
|
| 781 |
+
| 1.3467 | 15350 | - | 0.1585 | 0.8408 | 0.8394 |
|
| 782 |
+
| 1.3511 | 15400 | - | 0.1635 | 0.8403 | 0.8389 |
|
| 783 |
+
| 1.3555 | 15450 | - | 0.1569 | 0.8453 | 0.8444 |
|
| 784 |
+
| 1.3599 | 15500 | 0.2552 | 0.1605 | 0.8434 | 0.8412 |
|
| 785 |
+
| 1.3643 | 15550 | - | 0.1542 | 0.8420 | 0.8397 |
|
| 786 |
+
| 1.3687 | 15600 | - | 0.1622 | 0.8456 | 0.8451 |
|
| 787 |
+
| 1.3730 | 15650 | - | 0.1569 | 0.8466 | 0.8443 |
|
| 788 |
+
| 1.3774 | 15700 | - | 0.1550 | 0.8440 | 0.8416 |
|
| 789 |
+
| 1.3818 | 15750 | 0.2532 | 0.1569 | 0.8459 | 0.8445 |
|
| 790 |
+
| 1.3862 | 15800 | - | 0.1567 | 0.8462 | 0.8451 |
|
| 791 |
+
| 1.3906 | 15850 | - | 0.1504 | 0.8442 | 0.8422 |
|
| 792 |
+
| 1.3950 | 15900 | - | 0.1524 | 0.8437 | 0.8419 |
|
| 793 |
+
| 1.3994 | 15950 | - | 0.1491 | 0.8438 | 0.8413 |
|
| 794 |
+
| 1.4038 | 16000 | 0.265 | 0.1533 | 0.8428 | 0.8406 |
|
| 795 |
+
| 1.4081 | 16050 | - | 0.1492 | 0.8425 | 0.8399 |
|
| 796 |
+
| 1.4125 | 16100 | - | 0.1486 | 0.8410 | 0.8386 |
|
| 797 |
+
| 1.4169 | 16150 | - | 0.1530 | 0.8458 | 0.8433 |
|
| 798 |
+
| 1.4213 | 16200 | - | 0.1535 | 0.8437 | 0.8427 |
|
| 799 |
+
| 1.4257 | 16250 | 0.2512 | 0.1508 | 0.8453 | 0.8446 |
|
| 800 |
+
| 1.4301 | 16300 | - | 0.1540 | 0.8427 | 0.8411 |
|
| 801 |
+
| 1.4345 | 16350 | - | 0.1513 | 0.8414 | 0.8388 |
|
| 802 |
+
| 1.4388 | 16400 | - | 0.1553 | 0.8464 | 0.8461 |
|
| 803 |
+
| 1.4432 | 16450 | - | 0.1528 | 0.8434 | 0.8412 |
|
| 804 |
+
| 1.4476 | 16500 | 0.2545 | 0.1522 | 0.8419 | 0.8399 |
|
| 805 |
+
| 1.4520 | 16550 | - | 0.1521 | 0.8423 | 0.8416 |
|
| 806 |
+
| 1.4564 | 16600 | - | 0.1433 | 0.8427 | 0.8410 |
|
| 807 |
+
| 1.4608 | 16650 | - | 0.1500 | 0.8419 | 0.8401 |
|
| 808 |
+
| 1.4652 | 16700 | - | 0.1442 | 0.8425 | 0.8392 |
|
| 809 |
+
| 1.4696 | 16750 | 0.2549 | 0.1496 | 0.8397 | 0.8376 |
|
| 810 |
+
| 1.4739 | 16800 | - | 0.1556 | 0.8463 | 0.8435 |
|
| 811 |
+
| 1.4783 | 16850 | - | 0.1510 | 0.8458 | 0.8432 |
|
| 812 |
+
| 1.4827 | 16900 | - | 0.1469 | 0.8431 | 0.8423 |
|
| 813 |
+
| 1.4871 | 16950 | - | 0.1481 | 0.8456 | 0.8441 |
|
| 814 |
+
| 1.4915 | 17000 | 0.2522 | 0.1512 | 0.8456 | 0.8437 |
|
| 815 |
+
| 1.4959 | 17050 | - | 0.1471 | 0.8455 | 0.8430 |
|
| 816 |
+
| 1.5003 | 17100 | - | 0.1397 | 0.8409 | 0.8383 |
|
| 817 |
+
| 1.5046 | 17150 | - | 0.1414 | 0.8427 | 0.8404 |
|
| 818 |
+
| 1.5090 | 17200 | - | 0.1474 | 0.8432 | 0.8420 |
|
| 819 |
+
| 1.5134 | 17250 | 0.2489 | 0.1499 | 0.8414 | 0.8412 |
|
| 820 |
+
| 1.5178 | 17300 | - | 0.1442 | 0.8390 | 0.8376 |
|
| 821 |
+
| 1.5222 | 17350 | - | 0.1474 | 0.8373 | 0.8370 |
|
| 822 |
+
| 1.5266 | 17400 | - | 0.1435 | 0.8353 | 0.8352 |
|
| 823 |
+
| 1.5310 | 17450 | - | 0.1461 | 0.8380 | 0.8363 |
|
| 824 |
+
| 1.5354 | 17500 | 0.2493 | 0.1477 | 0.8362 | 0.8353 |
|
| 825 |
+
| 1.5397 | 17550 | - | 0.1503 | 0.8398 | 0.8385 |
|
| 826 |
+
| 1.5441 | 17600 | - | 0.1474 | 0.8372 | 0.8376 |
|
| 827 |
+
| 1.5485 | 17650 | - | 0.1499 | 0.8408 | 0.8390 |
|
| 828 |
+
| 1.5529 | 17700 | - | 0.1501 | 0.8386 | 0.8369 |
|
| 829 |
+
| 1.5573 | 17750 | 0.2499 | 0.1474 | 0.8367 | 0.8351 |
|
| 830 |
+
| 1.5617 | 17800 | - | 0.1406 | 0.8380 | 0.8362 |
|
| 831 |
+
| 1.5661 | 17850 | - | 0.1457 | 0.8399 | 0.8396 |
|
| 832 |
+
| 1.5705 | 17900 | - | 0.1486 | 0.8409 | 0.8399 |
|
| 833 |
+
| 1.5748 | 17950 | - | 0.1493 | 0.8407 | 0.8397 |
|
| 834 |
+
| 1.5792 | 18000 | 0.2419 | 0.1490 | 0.8400 | 0.8386 |
|
| 835 |
+
| 1.5836 | 18050 | - | 0.1496 | 0.8403 | 0.8388 |
|
| 836 |
+
| 1.5880 | 18100 | - | 0.1509 | 0.8422 | 0.8401 |
|
| 837 |
+
| 1.5924 | 18150 | - | 0.1513 | 0.8433 | 0.8420 |
|
| 838 |
+
| 1.5968 | 18200 | - | 0.1546 | 0.8420 | 0.8408 |
|
| 839 |
+
| 1.6012 | 18250 | 0.2458 | 0.1529 | 0.8414 | 0.8398 |
|
| 840 |
+
| 1.6055 | 18300 | - | 0.1580 | 0.8414 | 0.8391 |
|
| 841 |
+
| 1.6099 | 18350 | - | 0.1483 | 0.8389 | 0.8363 |
|
| 842 |
+
| 1.6143 | 18400 | - | 0.1501 | 0.8419 | 0.8405 |
|
| 843 |
+
| 1.6187 | 18450 | - | 0.1488 | 0.8413 | 0.8388 |
|
| 844 |
+
| 1.6231 | 18500 | 0.2532 | 0.1499 | 0.8418 | 0.8410 |
|
| 845 |
+
| 1.6275 | 18550 | - | 0.1520 | 0.8409 | 0.8408 |
|
| 846 |
+
| 1.6319 | 18600 | - | 0.1521 | 0.8407 | 0.8392 |
|
| 847 |
+
| 1.6363 | 18650 | - | 0.1459 | 0.8402 | 0.8382 |
|
| 848 |
+
| 1.6406 | 18700 | - | 0.1556 | 0.8433 | 0.8427 |
|
| 849 |
+
| 1.6450 | 18750 | 0.24 | 0.1501 | 0.8421 | 0.8410 |
|
| 850 |
+
| 1.6494 | 18800 | - | 0.1485 | 0.8439 | 0.8425 |
|
| 851 |
+
| 1.6538 | 18850 | - | 0.1526 | 0.8412 | 0.8406 |
|
| 852 |
+
| 1.6582 | 18900 | - | 0.1522 | 0.8422 | 0.8425 |
|
| 853 |
+
| 1.6626 | 18950 | - | 0.1456 | 0.8406 | 0.8390 |
|
| 854 |
+
| 1.6670 | 19000 | 0.2404 | 0.1483 | 0.8412 | 0.8408 |
|
| 855 |
+
| 1.6713 | 19050 | - | 0.1550 | 0.8424 | 0.8428 |
|
| 856 |
+
| 1.6757 | 19100 | - | 0.1493 | 0.8387 | 0.8384 |
|
| 857 |
+
| 1.6801 | 19150 | - | 0.1523 | 0.8391 | 0.8379 |
|
| 858 |
+
| 1.6845 | 19200 | - | 0.1512 | 0.8366 | 0.8343 |
|
| 859 |
+
| 1.6889 | 19250 | 0.2401 | 0.1506 | 0.8372 | 0.8348 |
|
| 860 |
+
| 1.6933 | 19300 | - | 0.1457 | 0.8375 | 0.8343 |
|
| 861 |
+
| 1.6977 | 19350 | - | 0.1500 | 0.8403 | 0.8379 |
|
| 862 |
+
| 1.7021 | 19400 | - | 0.1464 | 0.8380 | 0.8367 |
|
| 863 |
+
| 1.7064 | 19450 | - | 0.1485 | 0.8403 | 0.8397 |
|
| 864 |
+
| 1.7108 | 19500 | 0.2329 | 0.1469 | 0.8450 | 0.8417 |
|
| 865 |
+
| 1.7152 | 19550 | - | 0.1498 | 0.8418 | 0.8391 |
|
| 866 |
+
| 1.7196 | 19600 | - | 0.1427 | 0.8394 | 0.8384 |
|
| 867 |
+
| 1.7240 | 19650 | - | 0.1493 | 0.8399 | 0.8392 |
|
| 868 |
+
| 1.7284 | 19700 | - | 0.1487 | 0.8423 | 0.8406 |
|
| 869 |
+
| 1.7328 | 19750 | 0.2397 | 0.1464 | 0.8420 | 0.8398 |
|
| 870 |
+
| 1.7371 | 19800 | - | 0.1511 | 0.8433 | 0.8406 |
|
| 871 |
+
| 1.7415 | 19850 | - | 0.1502 | 0.8391 | 0.8365 |
|
| 872 |
+
| 1.7459 | 19900 | - | 0.1527 | 0.8404 | 0.8386 |
|
| 873 |
+
| 1.7503 | 19950 | - | 0.1498 | 0.8397 | 0.8390 |
|
| 874 |
+
| 1.7547 | 20000 | 0.2312 | 0.1505 | 0.8413 | 0.8389 |
|
| 875 |
+
| 1.7591 | 20050 | - | 0.1525 | 0.8411 | 0.8396 |
|
| 876 |
+
| 1.7635 | 20100 | - | 0.1491 | 0.8380 | 0.8370 |
|
| 877 |
+
| 1.7679 | 20150 | - | 0.1431 | 0.8395 | 0.8382 |
|
| 878 |
+
| 1.7722 | 20200 | - | 0.1451 | 0.8365 | 0.8352 |
|
| 879 |
+
| 1.7766 | 20250 | 0.2319 | 0.1485 | 0.8388 | 0.8366 |
|
| 880 |
+
| 1.7810 | 20300 | - | 0.1499 | 0.8376 | 0.8367 |
|
| 881 |
+
| 1.7854 | 20350 | - | 0.1448 | 0.8364 | 0.8349 |
|
| 882 |
+
| 1.7898 | 20400 | - | 0.1485 | 0.8346 | 0.8328 |
|
| 883 |
+
| 1.7942 | 20450 | - | 0.1470 | 0.8376 | 0.8364 |
|
| 884 |
+
| 1.7986 | 20500 | 0.2295 | 0.1471 | 0.8386 | 0.8363 |
|
| 885 |
+
| 1.8029 | 20550 | - | 0.1501 | 0.8351 | 0.8329 |
|
| 886 |
+
| 1.8073 | 20600 | - | 0.1494 | 0.8382 | 0.8364 |
|
| 887 |
+
| 1.8117 | 20650 | - | 0.1489 | 0.8405 | 0.8386 |
|
| 888 |
+
| 1.8161 | 20700 | - | 0.1465 | 0.8381 | 0.8372 |
|
| 889 |
+
| 1.8205 | 20750 | 0.2408 | 0.1435 | 0.8398 | 0.8390 |
|
| 890 |
+
| 1.8249 | 20800 | - | 0.1498 | 0.8449 | 0.8431 |
|
| 891 |
+
| 1.8293 | 20850 | - | 0.1487 | 0.8431 | 0.8416 |
|
| 892 |
+
| 1.8337 | 20900 | - | 0.1456 | 0.8419 | 0.8394 |
|
| 893 |
+
| 1.8380 | 20950 | - | 0.1437 | 0.8423 | 0.8408 |
|
| 894 |
+
| 1.8424 | 21000 | 0.2374 | 0.1408 | 0.8425 | 0.8414 |
|
| 895 |
+
| 1.8468 | 21050 | - | 0.1434 | 0.8434 | 0.8418 |
|
| 896 |
+
| 1.8512 | 21100 | - | 0.1486 | 0.8422 | 0.8403 |
|
| 897 |
+
| 1.8556 | 21150 | - | 0.1467 | 0.8429 | 0.8421 |
|
| 898 |
+
| 1.8600 | 21200 | - | 0.1458 | 0.8409 | 0.8402 |
|
| 899 |
+
| 1.8644 | 21250 | 0.2385 | 0.1449 | 0.8411 | 0.8395 |
|
| 900 |
+
| 1.8687 | 21300 | - | 0.1415 | 0.8401 | 0.8390 |
|
| 901 |
+
| 1.8731 | 21350 | - | 0.1462 | 0.8417 | 0.8403 |
|
| 902 |
+
| 1.8775 | 21400 | - | 0.1468 | 0.8423 | 0.8403 |
|
| 903 |
+
| 1.8819 | 21450 | - | 0.1459 | 0.8417 | 0.8394 |
|
| 904 |
+
| 1.8863 | 21500 | 0.2302 | 0.1466 | 0.8396 | 0.8372 |
|
| 905 |
+
| 1.8907 | 21550 | - | 0.1479 | 0.8391 | 0.8363 |
|
| 906 |
+
| 1.8951 | 21600 | - | 0.1407 | 0.8382 | 0.8365 |
|
| 907 |
+
| 1.8995 | 21650 | - | 0.1462 | 0.8377 | 0.8355 |
|
| 908 |
+
| 1.9038 | 21700 | - | 0.1438 | 0.8348 | 0.8343 |
|
| 909 |
+
| 1.9082 | 21750 | 0.2383 | 0.1451 | 0.8371 | 0.8363 |
|
| 910 |
+
| 1.9126 | 21800 | - | 0.1448 | 0.8375 | 0.8360 |
|
| 911 |
+
| 1.9170 | 21850 | - | 0.1389 | 0.8383 | 0.8377 |
|
| 912 |
+
| 1.9214 | 21900 | - | 0.1409 | 0.8379 | 0.8367 |
|
| 913 |
+
| 1.9258 | 21950 | - | 0.1397 | 0.8374 | 0.8352 |
|
| 914 |
+
| 1.9302 | 22000 | 0.2321 | 0.1408 | 0.8405 | 0.8385 |
|
| 915 |
+
| 1.9345 | 22050 | - | 0.1451 | 0.8381 | 0.8363 |
|
| 916 |
+
| 1.9389 | 22100 | - | 0.1467 | 0.8363 | 0.8353 |
|
| 917 |
+
| 1.9433 | 22150 | - | 0.1459 | 0.8352 | 0.8337 |
|
| 918 |
+
| 1.9477 | 22200 | - | 0.1431 | 0.8382 | 0.8355 |
|
| 919 |
+
| 1.9521 | 22250 | 0.2282 | 0.1457 | 0.8385 | 0.8371 |
|
| 920 |
+
| 1.9565 | 22300 | - | 0.1475 | 0.8364 | 0.8359 |
|
| 921 |
+
| 1.9609 | 22350 | - | 0.1483 | 0.8370 | 0.8336 |
|
| 922 |
+
| 1.9653 | 22400 | - | 0.1469 | 0.8406 | 0.8373 |
|
| 923 |
+
| 1.9696 | 22450 | - | 0.1430 | 0.8415 | 0.8391 |
|
| 924 |
+
| 1.9740 | 22500 | 0.2294 | 0.1471 | 0.8417 | 0.8399 |
|
| 925 |
+
| 1.9784 | 22550 | - | 0.1467 | 0.8414 | 0.8413 |
|
| 926 |
+
| 1.9828 | 22600 | - | 0.1464 | 0.8423 | 0.8410 |
|
| 927 |
+
| 1.9872 | 22650 | - | 0.1475 | 0.8431 | 0.8432 |
|
| 928 |
+
| 1.9916 | 22700 | - | 0.1476 | 0.8450 | 0.8442 |
|
| 929 |
+
| 1.9960 | 22750 | 0.2242 | 0.1463 | 0.8443 | 0.8418 |
|
| 930 |
+
| 2.0004 | 22800 | - | 0.1472 | 0.8422 | 0.8412 |
|
| 931 |
+
| 2.0047 | 22850 | - | 0.1506 | 0.8452 | 0.8435 |
|
| 932 |
+
| 2.0091 | 22900 | - | 0.1478 | 0.8463 | 0.8432 |
|
| 933 |
+
| 2.0135 | 22950 | - | 0.1536 | 0.8479 | 0.8454 |
|
| 934 |
+
| 2.0179 | 23000 | 0.2249 | 0.1487 | 0.8453 | 0.8422 |
|
| 935 |
+
| 2.0223 | 23050 | - | 0.1484 | 0.8430 | 0.8410 |
|
| 936 |
+
| 2.0267 | 23100 | - | 0.1524 | 0.8454 | 0.8440 |
|
| 937 |
+
| 2.0311 | 23150 | - | 0.1475 | 0.8450 | 0.8422 |
|
| 938 |
+
| 2.0354 | 23200 | - | 0.1533 | 0.8460 | 0.8435 |
|
| 939 |
+
| 2.0398 | 23250 | 0.2165 | 0.1551 | 0.8428 | 0.8410 |
|
| 940 |
+
| 2.0442 | 23300 | - | 0.1507 | 0.8425 | 0.8400 |
|
| 941 |
+
| 2.0486 | 23350 | - | 0.1517 | 0.8427 | 0.8410 |
|
| 942 |
+
| 2.0530 | 23400 | - | 0.1524 | 0.8404 | 0.8391 |
|
| 943 |
+
| 2.0574 | 23450 | - | 0.1515 | 0.8415 | 0.8408 |
|
| 944 |
+
| 2.0618 | 23500 | 0.2258 | 0.1500 | 0.8392 | 0.8384 |
|
| 945 |
+
| 2.0662 | 23550 | - | 0.1461 | 0.8387 | 0.8362 |
|
| 946 |
+
| 2.0705 | 23600 | - | 0.1429 | 0.8408 | 0.8378 |
|
| 947 |
+
| 2.0749 | 23650 | - | 0.1473 | 0.8410 | 0.8398 |
|
| 948 |
+
| 2.0793 | 23700 | - | 0.1474 | 0.8415 | 0.8402 |
|
| 949 |
+
| 2.0837 | 23750 | 0.2309 | 0.1479 | 0.8425 | 0.8408 |
|
| 950 |
+
| 2.0881 | 23800 | - | 0.1493 | 0.8427 | 0.8390 |
|
| 951 |
+
| 2.0925 | 23850 | - | 0.1469 | 0.8419 | 0.8394 |
|
| 952 |
+
| 2.0969 | 23900 | - | 0.1460 | 0.8426 | 0.8406 |
|
| 953 |
+
| 2.1012 | 23950 | - | 0.1502 | 0.8433 | 0.8418 |
|
| 954 |
+
| 2.1056 | 24000 | 0.2113 | 0.1462 | 0.8423 | 0.8406 |
|
| 955 |
+
| 2.1100 | 24050 | - | 0.1463 | 0.8429 | 0.8398 |
|
| 956 |
+
| 2.1144 | 24100 | - | 0.1459 | 0.8431 | 0.8400 |
|
| 957 |
+
| 2.1188 | 24150 | - | 0.1417 | 0.8403 | 0.8381 |
|
| 958 |
+
| 2.1232 | 24200 | - | 0.1396 | 0.8376 | 0.8371 |
|
| 959 |
+
| 2.1276 | 24250 | 0.2132 | 0.1419 | 0.8382 | 0.8380 |
|
| 960 |
+
| 2.1320 | 24300 | - | 0.1444 | 0.8378 | 0.8377 |
|
| 961 |
+
| 2.1363 | 24350 | - | 0.1399 | 0.8334 | 0.8342 |
|
| 962 |
+
| 2.1407 | 24400 | - | 0.1363 | 0.8382 | 0.8361 |
|
| 963 |
+
| 2.1451 | 24450 | - | 0.1379 | 0.8381 | 0.8369 |
|
| 964 |
+
| 2.1495 | 24500 | 0.2124 | 0.1421 | 0.8403 | 0.8391 |
|
| 965 |
+
| 2.1539 | 24550 | - | 0.1445 | 0.8399 | 0.8391 |
|
| 966 |
+
| 2.1583 | 24600 | - | 0.1452 | 0.8416 | 0.8401 |
|
| 967 |
+
| 2.1627 | 24650 | - | 0.1426 | 0.8411 | 0.8385 |
|
| 968 |
+
| 2.1670 | 24700 | - | 0.1447 | 0.8424 | 0.8407 |
|
| 969 |
+
| 2.1714 | 24750 | 0.2058 | 0.1460 | 0.8422 | 0.8413 |
|
| 970 |
+
| 2.1758 | 24800 | - | 0.1434 | 0.8422 | 0.8418 |
|
| 971 |
+
| 2.1802 | 24850 | - | 0.1443 | 0.8438 | 0.8416 |
|
| 972 |
+
| 2.1846 | 24900 | - | 0.1414 | 0.8422 | 0.8405 |
|
| 973 |
+
| 2.1890 | 24950 | - | 0.1437 | 0.8424 | 0.8407 |
|
| 974 |
+
| 2.1934 | 25000 | 0.2111 | 0.1466 | 0.8401 | 0.8394 |
|
| 975 |
+
| 2.1978 | 25050 | - | 0.1437 | 0.8390 | 0.8377 |
|
| 976 |
+
| 2.2021 | 25100 | - | 0.1446 | 0.8402 | 0.8394 |
|
| 977 |
+
| 2.2065 | 25150 | - | 0.1457 | 0.8394 | 0.8380 |
|
| 978 |
+
| 2.2109 | 25200 | - | 0.1432 | 0.8406 | 0.8380 |
|
| 979 |
+
| 2.2153 | 25250 | 0.2013 | 0.1464 | 0.8412 | 0.8397 |
|
| 980 |
+
| 2.2197 | 25300 | - | 0.1499 | 0.8419 | 0.8388 |
|
| 981 |
+
| 2.2241 | 25350 | - | 0.1466 | 0.8425 | 0.8402 |
|
| 982 |
+
| 2.2285 | 25400 | - | 0.1429 | 0.8424 | 0.8397 |
|
| 983 |
+
| 2.2328 | 25450 | - | 0.1433 | 0.8430 | 0.8404 |
|
| 984 |
+
| 2.2372 | 25500 | 0.2064 | 0.1472 | 0.8410 | 0.8404 |
|
| 985 |
+
| 2.2416 | 25550 | - | 0.1451 | 0.8406 | 0.8386 |
|
| 986 |
+
| 2.2460 | 25600 | - | 0.1480 | 0.8427 | 0.8419 |
|
| 987 |
+
| 2.2504 | 25650 | - | 0.1507 | 0.8409 | 0.8412 |
|
| 988 |
+
| 2.2548 | 25700 | - | 0.1488 | 0.8407 | 0.8398 |
|
| 989 |
+
| 2.2592 | 25750 | 0.2084 | 0.1476 | 0.8401 | 0.8392 |
|
| 990 |
+
| 2.2636 | 25800 | - | 0.1478 | 0.8403 | 0.8388 |
|
| 991 |
+
| 2.2679 | 25850 | - | 0.1509 | 0.8420 | 0.8417 |
|
| 992 |
+
| 2.2723 | 25900 | - | 0.1464 | 0.8417 | 0.8396 |
|
| 993 |
+
| 2.2767 | 25950 | - | 0.1469 | 0.8406 | 0.8388 |
|
| 994 |
+
| 2.2811 | 26000 | 0.2113 | 0.1470 | 0.8422 | 0.8404 |
|
| 995 |
+
| 2.2855 | 26050 | - | 0.1479 | 0.8414 | 0.8411 |
|
| 996 |
+
| 2.2899 | 26100 | - | 0.1488 | 0.8424 | 0.8418 |
|
| 997 |
+
| 2.2943 | 26150 | - | 0.1508 | 0.8429 | 0.8428 |
|
| 998 |
+
| 2.2986 | 26200 | - | 0.1507 | 0.8425 | 0.8422 |
|
| 999 |
+
| 2.3030 | 26250 | 0.2045 | 0.1496 | 0.8423 | 0.8416 |
|
| 1000 |
+
|
| 1001 |
+
</details>
|
| 1002 |
+
|
| 1003 |
+
### Framework Versions
|
| 1004 |
+
- Python: 3.10.14
|
| 1005 |
+
- Sentence Transformers: 3.2.0
|
| 1006 |
+
- Transformers: 4.45.2
|
| 1007 |
+
- PyTorch: 2.3.1
|
| 1008 |
+
- Accelerate: 1.0.1
|
| 1009 |
+
- Datasets: 3.0.1
|
| 1010 |
+
- Tokenizers: 0.20.1
|
| 1011 |
+
|
| 1012 |
+
## Citation
|
| 1013 |
+
|
| 1014 |
+
### BibTeX
|
| 1015 |
+
|
| 1016 |
+
#### Sentence Transformers
|
| 1017 |
+
```bibtex
|
| 1018 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1019 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1020 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1021 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1022 |
+
month = "11",
|
| 1023 |
+
year = "2019",
|
| 1024 |
+
publisher = "Association for Computational Linguistics",
|
| 1025 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1026 |
+
}
|
| 1027 |
+
```
|
| 1028 |
+
|
| 1029 |
+
#### MatryoshkaLoss
|
| 1030 |
+
```bibtex
|
| 1031 |
+
@misc{kusupati2024matryoshka,
|
| 1032 |
+
title={Matryoshka Representation Learning},
|
| 1033 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
| 1034 |
+
year={2024},
|
| 1035 |
+
eprint={2205.13147},
|
| 1036 |
+
archivePrefix={arXiv},
|
| 1037 |
+
primaryClass={cs.LG}
|
| 1038 |
+
}
|
| 1039 |
+
```
|
| 1040 |
+
|
| 1041 |
+
#### MultipleNegativesRankingLoss
|
| 1042 |
+
```bibtex
|
| 1043 |
+
@misc{henderson2017efficient,
|
| 1044 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 1045 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 1046 |
+
year={2017},
|
| 1047 |
+
eprint={1705.00652},
|
| 1048 |
+
archivePrefix={arXiv},
|
| 1049 |
+
primaryClass={cs.CL}
|
| 1050 |
+
}
|
| 1051 |
+
```
|
| 1052 |
+
|
| 1053 |
+
<!--
|
| 1054 |
+
## Glossary
|
| 1055 |
+
|
| 1056 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1057 |
+
-->
|
| 1058 |
+
|
| 1059 |
+
<!--
|
| 1060 |
+
## Model Card Authors
|
| 1061 |
+
|
| 1062 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1063 |
+
-->
|
| 1064 |
+
|
| 1065 |
+
<!--
|
| 1066 |
+
## Model Card Contact
|
| 1067 |
+
|
| 1068 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1069 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/workspace/v3-matryoshka_aubmindlab-bert-base-arabertv02-2024-10-12_13-55-06/checkpoint-26250",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 3072,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.45.2",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 64000
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.2.0",
|
| 4 |
+
"transformers": "4.45.2",
|
| 5 |
+
"pytorch": "2.3.1"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c15b891f76f7e12add432f68cf9e51c200ddd9179fa6435324737f81063eb5b4
|
| 3 |
+
size 540795752
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "[رابط]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": true,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "[بريد]",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": true,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"7": {
|
| 60 |
+
"content": "[مستخدم]",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": true,
|
| 65 |
+
"special": true
|
| 66 |
+
}
|
| 67 |
+
},
|
| 68 |
+
"clean_up_tokenization_spaces": false,
|
| 69 |
+
"cls_token": "[CLS]",
|
| 70 |
+
"do_basic_tokenize": true,
|
| 71 |
+
"do_lower_case": false,
|
| 72 |
+
"mask_token": "[MASK]",
|
| 73 |
+
"max_len": 512,
|
| 74 |
+
"max_length": 512,
|
| 75 |
+
"model_max_length": 512,
|
| 76 |
+
"never_split": [
|
| 77 |
+
"[بريد]",
|
| 78 |
+
"[مستخدم]",
|
| 79 |
+
"[رابط]"
|
| 80 |
+
],
|
| 81 |
+
"pad_to_multiple_of": null,
|
| 82 |
+
"pad_token": "[PAD]",
|
| 83 |
+
"pad_token_type_id": 0,
|
| 84 |
+
"padding_side": "right",
|
| 85 |
+
"sep_token": "[SEP]",
|
| 86 |
+
"stride": 0,
|
| 87 |
+
"strip_accents": null,
|
| 88 |
+
"tokenize_chinese_chars": true,
|
| 89 |
+
"tokenizer_class": "BertTokenizer",
|
| 90 |
+
"truncation_side": "right",
|
| 91 |
+
"truncation_strategy": "longest_first",
|
| 92 |
+
"unk_token": "[UNK]"
|
| 93 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|