Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: silmi224/finetune-led-35000
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: exp2-led-risalah_data_v5
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# exp2-led-risalah_data_v5
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [silmi224/finetune-led-35000](https://huggingface.co/silmi224/finetune-led-35000) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.7589
|
21 |
+
- Rouge1: 26.7539
|
22 |
+
- Rouge2: 14.0212
|
23 |
+
- Rougel: 20.1731
|
24 |
+
- Rougelsum: 25.1551
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 1
|
45 |
+
- eval_batch_size: 1
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 8
|
48 |
+
- total_train_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 300
|
52 |
+
- num_epochs: 30
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
59 |
+
| 2.9869 | 1.0 | 10 | 2.6276 | 11.0083 | 2.5296 | 7.506 | 10.1145 |
|
60 |
+
| 2.8353 | 2.0 | 20 | 2.4357 | 13.1976 | 3.65 | 8.9898 | 12.4118 |
|
61 |
+
| 2.5921 | 3.0 | 30 | 2.2455 | 16.1167 | 5.4776 | 10.4243 | 14.5496 |
|
62 |
+
| 2.3757 | 4.0 | 40 | 2.1281 | 17.8354 | 6.4512 | 11.7275 | 16.9533 |
|
63 |
+
| 2.1921 | 5.0 | 50 | 2.0448 | 18.5671 | 6.3838 | 11.8151 | 16.7216 |
|
64 |
+
| 2.0619 | 6.0 | 60 | 1.9658 | 19.418 | 7.8173 | 11.8446 | 17.7673 |
|
65 |
+
| 1.9489 | 7.0 | 70 | 1.9050 | 19.6714 | 8.7398 | 11.7735 | 18.2189 |
|
66 |
+
| 1.8528 | 8.0 | 80 | 1.8411 | 20.675 | 7.8977 | 13.2651 | 19.5985 |
|
67 |
+
| 1.7631 | 9.0 | 90 | 1.8053 | 21.4919 | 8.5355 | 14.4864 | 20.2444 |
|
68 |
+
| 1.6934 | 10.0 | 100 | 1.7678 | 22.8921 | 10.0231 | 15.5104 | 21.1864 |
|
69 |
+
| 1.6315 | 11.0 | 110 | 1.7469 | 23.6054 | 10.4158 | 17.2392 | 22.3891 |
|
70 |
+
| 1.5724 | 12.0 | 120 | 1.7193 | 24.3411 | 10.8448 | 17.7772 | 22.8939 |
|
71 |
+
| 1.5203 | 13.0 | 130 | 1.7036 | 24.21 | 12.0234 | 17.3522 | 23.2189 |
|
72 |
+
| 1.4649 | 14.0 | 140 | 1.6940 | 23.8491 | 12.0368 | 17.3502 | 23.0718 |
|
73 |
+
| 1.416 | 15.0 | 150 | 1.6830 | 26.1747 | 12.5858 | 17.6622 | 25.0178 |
|
74 |
+
| 1.3721 | 16.0 | 160 | 1.6824 | 24.8559 | 12.6545 | 17.8682 | 24.0 |
|
75 |
+
| 1.3305 | 17.0 | 170 | 1.6648 | 25.7287 | 12.9393 | 18.9578 | 24.6492 |
|
76 |
+
| 1.2875 | 18.0 | 180 | 1.6513 | 23.8505 | 12.4778 | 18.1576 | 23.5659 |
|
77 |
+
| 1.246 | 19.0 | 190 | 1.6479 | 24.4501 | 12.8525 | 18.2542 | 23.6368 |
|
78 |
+
| 1.2084 | 20.0 | 200 | 1.6578 | 25.1775 | 12.5258 | 19.1736 | 24.2117 |
|
79 |
+
| 1.1673 | 21.0 | 210 | 1.6560 | 24.077 | 11.612 | 18.7053 | 22.9301 |
|
80 |
+
| 1.1305 | 22.0 | 220 | 1.6623 | 25.3731 | 12.5498 | 19.0849 | 24.5792 |
|
81 |
+
| 1.0883 | 23.0 | 230 | 1.6841 | 25.5239 | 13.1539 | 18.9111 | 24.822 |
|
82 |
+
| 1.0525 | 24.0 | 240 | 1.6613 | 25.1741 | 12.7783 | 18.5908 | 23.8229 |
|
83 |
+
| 1.0194 | 25.0 | 250 | 1.6836 | 25.3784 | 12.4683 | 18.4044 | 23.728 |
|
84 |
+
| 0.9778 | 26.0 | 260 | 1.7123 | 26.1912 | 13.5667 | 19.8968 | 25.3049 |
|
85 |
+
| 0.9443 | 27.0 | 270 | 1.7145 | 26.1743 | 14.4669 | 19.4401 | 25.6498 |
|
86 |
+
| 0.912 | 28.0 | 280 | 1.7265 | 25.2527 | 12.0503 | 18.376 | 23.9647 |
|
87 |
+
| 0.8774 | 29.0 | 290 | 1.7314 | 25.7905 | 12.9724 | 19.3096 | 24.8918 |
|
88 |
+
| 0.8425 | 30.0 | 300 | 1.7589 | 26.7539 | 14.0212 | 20.1731 | 25.1551 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.41.2
|
94 |
+
- Pytorch 2.1.2
|
95 |
+
- Datasets 2.19.2
|
96 |
+
- Tokenizers 0.19.1
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"early_stopping": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"length_penalty": 2.0,
|
7 |
+
"max_length": 128,
|
8 |
+
"min_length": 40,
|
9 |
+
"no_repeat_ngram_size": 3,
|
10 |
+
"num_beams": 2,
|
11 |
+
"pad_token_id": 1,
|
12 |
+
"transformers_version": "4.41.2",
|
13 |
+
"use_cache": false
|
14 |
+
}
|
runs/Jul23_01-01-21_d1ca11d71c54/events.out.tfevents.1721696514.d1ca11d71c54.143.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d6e38c0d27b5aa8cb2f5ae9fb1ca5382cf4e7a55f3c50f3f8c43f53dd2ffdb2
|
3 |
+
size 26411
|
runs/Jul23_01-01-21_d1ca11d71c54/events.out.tfevents.1721703720.d1ca11d71c54.143.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8fc7402815b40df68d39de4ee8c5eba0aeabf36ff6883da811889f96fb809cd
|
3 |
+
size 562
|