Model save
Browse files- README.md +67 -0
- all_results.json +9 -0
- train_results.json +9 -0
- trainer_state.json +0 -0
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/gemma-7b
|
3 |
+
library_name: transformers
|
4 |
+
model_name: gemma-7b-cpo-basic_long-5e-5-05-v120
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- orpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for gemma-7b-cpo-basic_long-5e-5-05-v120
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="silviasapora/gemma-7b-cpo-basic_long-5e-5-05-v120", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/n8x4azrl)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.1.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite ORPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{hong2024orpo,
|
49 |
+
title = {{ORPO: Monolithic Preference Optimization without Reference Model}},
|
50 |
+
author = {Jiwoo Hong and Noah Lee and James Thorne},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2403.07691}
|
53 |
+
}
|
54 |
+
```
|
55 |
+
|
56 |
+
Cite TRL as:
|
57 |
+
|
58 |
+
```bibtex
|
59 |
+
@misc{vonwerra2022trl,
|
60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
62 |
+
year = 2020,
|
63 |
+
journal = {GitHub repository},
|
64 |
+
publisher = {GitHub},
|
65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
66 |
+
}
|
67 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.9990156096189003,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 29.51147762504784,
|
5 |
+
"train_runtime": 15990.0341,
|
6 |
+
"train_samples": 56888,
|
7 |
+
"train_samples_per_second": 3.558,
|
8 |
+
"train_steps_per_second": 0.056
|
9 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.9990156096189003,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 29.51147762504784,
|
5 |
+
"train_runtime": 15990.0341,
|
6 |
+
"train_samples": 56888,
|
7 |
+
"train_samples_per_second": 3.558,
|
8 |
+
"train_steps_per_second": 0.056
|
9 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|