--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased-sst-2-64-13-smoothed results: [] --- # bert-large-uncased-sst-2-64-13-smoothed This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Accuracy: 0.8438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 75 - label_smoothing_factor: 0.45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.8114 | 0.5078 | | No log | 2.0 | 8 | 0.7930 | 0.5078 | | 0.8117 | 3.0 | 12 | 0.7630 | 0.5 | | 0.8117 | 4.0 | 16 | 0.7257 | 0.5078 | | 0.7546 | 5.0 | 20 | 0.6872 | 0.5938 | | 0.7546 | 6.0 | 24 | 0.6706 | 0.6875 | | 0.7546 | 7.0 | 28 | 0.6589 | 0.7578 | | 0.6762 | 8.0 | 32 | 0.6473 | 0.7734 | | 0.6762 | 9.0 | 36 | 0.6369 | 0.7812 | | 0.6014 | 10.0 | 40 | 0.6282 | 0.7969 | | 0.6014 | 11.0 | 44 | 0.6232 | 0.8125 | | 0.6014 | 12.0 | 48 | 0.6226 | 0.8281 | | 0.5545 | 13.0 | 52 | 0.6205 | 0.8281 | | 0.5545 | 14.0 | 56 | 0.6191 | 0.7969 | | 0.5486 | 15.0 | 60 | 0.6288 | 0.8047 | | 0.5486 | 16.0 | 64 | 0.6184 | 0.8438 | | 0.5486 | 17.0 | 68 | 0.6241 | 0.8203 | | 0.5451 | 18.0 | 72 | 0.6098 | 0.8438 | | 0.5451 | 19.0 | 76 | 0.6090 | 0.875 | | 0.5418 | 20.0 | 80 | 0.6094 | 0.8672 | | 0.5418 | 21.0 | 84 | 0.6092 | 0.8594 | | 0.5418 | 22.0 | 88 | 0.6102 | 0.8594 | | 0.5414 | 23.0 | 92 | 0.6107 | 0.8594 | | 0.5414 | 24.0 | 96 | 0.6106 | 0.8281 | | 0.5394 | 25.0 | 100 | 0.6104 | 0.8359 | | 0.5394 | 26.0 | 104 | 0.6107 | 0.8359 | | 0.5394 | 27.0 | 108 | 0.6125 | 0.8359 | | 0.539 | 28.0 | 112 | 0.6144 | 0.8359 | | 0.539 | 29.0 | 116 | 0.6139 | 0.8359 | | 0.5398 | 30.0 | 120 | 0.6149 | 0.8281 | | 0.5398 | 31.0 | 124 | 0.6174 | 0.8438 | | 0.5398 | 32.0 | 128 | 0.6216 | 0.8359 | | 0.5387 | 33.0 | 132 | 0.6200 | 0.8359 | | 0.5387 | 34.0 | 136 | 0.6151 | 0.8438 | | 0.5396 | 35.0 | 140 | 0.6138 | 0.8438 | | 0.5396 | 36.0 | 144 | 0.6140 | 0.8438 | | 0.5396 | 37.0 | 148 | 0.6147 | 0.8281 | | 0.5388 | 38.0 | 152 | 0.6111 | 0.8516 | | 0.5388 | 39.0 | 156 | 0.6097 | 0.8516 | | 0.5391 | 40.0 | 160 | 0.6088 | 0.8594 | | 0.5391 | 41.0 | 164 | 0.6090 | 0.8438 | | 0.5391 | 42.0 | 168 | 0.6109 | 0.8438 | | 0.5388 | 43.0 | 172 | 0.6102 | 0.8438 | | 0.5388 | 44.0 | 176 | 0.6088 | 0.8438 | | 0.5385 | 45.0 | 180 | 0.6091 | 0.8438 | | 0.5385 | 46.0 | 184 | 0.6127 | 0.8438 | | 0.5385 | 47.0 | 188 | 0.6167 | 0.8203 | | 0.5391 | 48.0 | 192 | 0.6143 | 0.8359 | | 0.5391 | 49.0 | 196 | 0.6071 | 0.8516 | | 0.5387 | 50.0 | 200 | 0.6061 | 0.8516 | | 0.5387 | 51.0 | 204 | 0.6054 | 0.8438 | | 0.5387 | 52.0 | 208 | 0.6037 | 0.8516 | | 0.5385 | 53.0 | 212 | 0.6019 | 0.8516 | | 0.5385 | 54.0 | 216 | 0.6008 | 0.8438 | | 0.5379 | 55.0 | 220 | 0.5998 | 0.8516 | | 0.5379 | 56.0 | 224 | 0.5992 | 0.8516 | | 0.5379 | 57.0 | 228 | 0.6001 | 0.8516 | | 0.5382 | 58.0 | 232 | 0.6026 | 0.8438 | | 0.5382 | 59.0 | 236 | 0.6039 | 0.8438 | | 0.5381 | 60.0 | 240 | 0.6043 | 0.8438 | | 0.5381 | 61.0 | 244 | 0.6032 | 0.8438 | | 0.5381 | 62.0 | 248 | 0.6030 | 0.8438 | | 0.5389 | 63.0 | 252 | 0.6023 | 0.8438 | | 0.5389 | 64.0 | 256 | 0.6019 | 0.8438 | | 0.5378 | 65.0 | 260 | 0.6024 | 0.8438 | | 0.5378 | 66.0 | 264 | 0.6025 | 0.8438 | | 0.5378 | 67.0 | 268 | 0.6020 | 0.8438 | | 0.5374 | 68.0 | 272 | 0.6016 | 0.8438 | | 0.5374 | 69.0 | 276 | 0.6017 | 0.8438 | | 0.5378 | 70.0 | 280 | 0.6023 | 0.8438 | | 0.5378 | 71.0 | 284 | 0.6025 | 0.8438 | | 0.5378 | 72.0 | 288 | 0.6024 | 0.8438 | | 0.5372 | 73.0 | 292 | 0.6023 | 0.8438 | | 0.5372 | 74.0 | 296 | 0.6024 | 0.8438 | | 0.5377 | 75.0 | 300 | 0.6024 | 0.8438 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3