File size: 26,692 Bytes
44d5f3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: As of December 30, 2023, about 92% of securities in the Company's
portfolio were at an unrealized loss position.
sentences:
- What additional document is included in the financial document apart from the
Consolidated Financial Statements?
- What percentage of the Company's portfolio of securities was in an unrealized
loss position as of December 30, 2023?
- What was the total loss the company incurred in association with the sale of the
eOne Music business in 2021?
- source_sentence: Revenue Recognition Product Sales We recognize revenue from product
sales when control of the product transfers to the customer, which is generally
upon shipment or delivery, or in certain cases, upon the corresponding sales by
our customer to a third party. Revenues are recognized net of estimated rebates
and chargebacks, patient co-pay assistance, prompt pay discounts, distributor
fees, sales return provisions and other related deductions. These deductions to
product sales are referred to as gross-to-net deductions and are estimated and
recorded in the period in which the related product sales occur.
sentences:
- What is the expiration date for the federal research and development tax credits
as of 2023?
- How are revenue recognition and Gross-to-Net deductions related in the context
of product sales?
- What is the approval status of Tirzepatide (Mounjaro, Zepbound®) for the treatment
of obesity as of 2023?
- source_sentence: The expected long-term rate of return assumption used in computing
2023 net periodic benefit income for the U.S. pension plans was 6.75%.
sentences:
- What is the expected long-term rate of return on plan assets used in computing
the 2023 net periodic benefit income for U.S. pension plans?
- What was the increase in postpaid phone subscribers at AT&T Inc. from 2021 to
2023?
- How does Chipotle ensure pay equity among its employees?
- source_sentence: In an Annual Report on Form 10-K, 'Litigation and Other Legal Matters'
are detailed under 'Note 13 — Commitments and Contingencies' in Part IV, Item
15 of the consolidated financial statements.
sentences:
- What is Apple's commitment to workplace practices and policies concerning harassment
or discrimination?
- By what percentage did net income increase in 2023 compared to 2022?
- In the structure of an Annual Report on Form 10-K, where does one find details
about 'Litigation and Other Legal Matters'?
- source_sentence: Any such inquiries or investigations (including the IDPC proceedings)
could subject us to substantial fines and costs, require us to change our business
practices, divert resources and the attention of management from our business,
or adversely affect our business.
sentences:
- What are some of the potential consequences for Meta Platforms, Inc. from inquiries
or investigations as noted in the provided text?
- What was the quarterly dividend declared by Bank of America's board of directors
on January 31, 2024?
- What recent technological advancements has the company implemented in set-top
box (STB) solutions?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7357142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8557142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8957142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9285714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7357142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28523809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1791428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09285714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7357142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8557142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8957142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9285714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8337852464509243
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8032046485260771
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8062343226371107
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7271428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8628571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.89
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9328571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7271428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2876190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17799999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09328571428571426
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7271428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8628571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.89
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9328571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8315560673246299
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7989370748299317
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.801544102570532
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.73
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8842857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9242857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.73
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17685714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09242857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.73
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8842857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9242857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8268873311527957
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7956485260770971
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.798561528530067
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9185714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09185714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9185714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8170171494742537
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.784555555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7871835671545038
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6928571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8471428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8928571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6928571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16942857142857143
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08928571428571426
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6928571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8471428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8928571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7945818011619106
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7630130385487527
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7667826657397622
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sintuk/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Any such inquiries or investigations (including the IDPC proceedings) could subject us to substantial fines and costs, require us to change our business practices, divert resources and the attention of management from our business, or adversely affect our business.',
'What are some of the potential consequences for Meta Platforms, Inc. from inquiries or investigations as noted in the provided text?',
"What was the quarterly dividend declared by Bank of America's board of directors on January 31, 2024?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:----------|:-----------|
| cosine_accuracy@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
| cosine_accuracy@3 | 0.8557 | 0.8629 | 0.8429 | 0.8414 | 0.8171 |
| cosine_accuracy@5 | 0.8957 | 0.89 | 0.8843 | 0.8671 | 0.8471 |
| cosine_accuracy@10 | 0.9286 | 0.9329 | 0.9243 | 0.9186 | 0.8929 |
| cosine_precision@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
| cosine_precision@3 | 0.2852 | 0.2876 | 0.281 | 0.2805 | 0.2724 |
| cosine_precision@5 | 0.1791 | 0.178 | 0.1769 | 0.1734 | 0.1694 |
| cosine_precision@10 | 0.0929 | 0.0933 | 0.0924 | 0.0919 | 0.0893 |
| cosine_recall@1 | 0.7357 | 0.7271 | 0.73 | 0.7157 | 0.6929 |
| cosine_recall@3 | 0.8557 | 0.8629 | 0.8429 | 0.8414 | 0.8171 |
| cosine_recall@5 | 0.8957 | 0.89 | 0.8843 | 0.8671 | 0.8471 |
| cosine_recall@10 | 0.9286 | 0.9329 | 0.9243 | 0.9186 | 0.8929 |
| **cosine_ndcg@10** | **0.8338** | **0.8316** | **0.8269** | **0.817** | **0.7946** |
| cosine_mrr@10 | 0.8032 | 0.7989 | 0.7956 | 0.7846 | 0.763 |
| cosine_map@100 | 0.8062 | 0.8015 | 0.7986 | 0.7872 | 0.7668 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 45.64 tokens</li><li>max: 301 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.4 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
| positive | anchor |
|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
| <code>We later began working with commercial enterprises, who often faced fundamentally similar challenges in working with data.</code> | <code>What type of software solutions did Palantir later provide to commercial enterprises?</code> |
| <code>General Motors Company was incorporated as a Delaware corporation in 2009.</code> | <code>What year was General Motors Company incorporated?</code> |
| <code>Companies with which we have strategic partnerships in some areas may be competitors in other areas.</code> | <code>What is the nature of IBM's relationship with its strategic partners in competitional terms?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122 | 10 | 1.6103 | - | - | - | - | - |
| 0.9746 | 12 | - | 0.8290 | 0.8247 | 0.8184 | 0.8110 | 0.7726 |
| 1.6244 | 20 | 0.6597 | - | - | - | - | - |
| 1.9492 | 24 | - | 0.8313 | 0.8290 | 0.8264 | 0.8161 | 0.7849 |
| 2.4365 | 30 | 0.5016 | - | - | - | - | - |
| 2.9239 | 36 | - | 0.8340 | 0.8323 | 0.8265 | 0.8170 | 0.7943 |
| 3.2487 | 40 | 0.4629 | - | - | - | - | - |
| **3.8985** | **48** | **-** | **0.8338** | **0.8316** | **0.8269** | **0.817** | **0.7946** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.41.2
- PyTorch: 2.2.2
- Accelerate: 1.5.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |