output_dir = "/workspace/ComfyUI/models/loras/out" dataset = "/workspace/configs/dataset_wan.toml" epochs = 1000 micro_batch_size_per_gpu = 1 pipeline_stages = 1 gradient_accumulation_steps = 1 gradient_clipping = 1.0 warmup_steps = 40 activation_checkpointing = true partition_method = "parameters" save_dtype = "bfloat16" caching_batch_size = 1 steps_per_print = 1 video_clip_mode = "single_beginning" save_every_n_epochs = 10 checkpoint_every_n_minutes = 120 blocks_to_swap = 20 eval_every_n_epochs = 1 eval_before_first_step = true eval_micro_batch_size_per_gpu = 1 eval_gradient_accumulation_steps = 1 [model] type = "wan" ckpt_path = "/workspace/Wan2.1" transformer_path = '/workspace/ComfyUI/models/diffusion_models/wan2.1_i2v_480p_14B_bf16.safetensors' llm_path = '/workspace/ComfyUI/models/text_encoders/umt5-xxl-enc-bf16.safetensors' dtype = "bfloat16" timestep_sample_method = "logit_normal" [adapter] type = "lora" rank = 32 dtype = "bfloat16" [optimizer] type = "adamw_optimi" lr = 1e-5 betas = [ 0.9, 0.99,] weight_decay = 0.01 [monitoring] # Set to true and fill in these fields to enable wandb enable_wandb = true wandb_api_key = 'f46df1bb828b735bd22f94fff1be190ba5e046f9' wandb_tracker_name = 'wan-lora' wandb_run_name = 'wan-lora'