skshmjn commited on
Commit
58a6c30
·
verified ·
1 Parent(s): 116143f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -7
README.md CHANGED
@@ -1,22 +1,56 @@
1
  ---
2
  base_model: unsloth/Llama-3.2-3B-Instruct
3
  tags:
4
- - text-generation-inference
 
 
5
  - transformers
6
  - unsloth
7
  - llama
8
  - trl
 
 
9
  license: apache-2.0
10
  language:
11
  - en
 
 
 
 
12
  ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** skshmjn
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct
 
 
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  base_model: unsloth/Llama-3.2-3B-Instruct
3
  tags:
4
+ - text-generation
5
+ - mongodb
6
+ - query-generation
7
  - transformers
8
  - unsloth
9
  - llama
10
  - trl
11
+ - gguf
12
+ - quantized
13
  license: apache-2.0
14
  language:
15
  - en
16
+ datasets:
17
+ - skshmjn/mongo_prompt_query
18
+ pipeline_tag: text-generation
19
+ library_name: transformers
20
  ---
21
 
22
+ # MongoDB Query Generator - Llama-3.2-3B (Fine-tuned)
23
 
24
+ - **Developed by:** skshmjn
25
+ - **License:** apache-2.0
26
+ - **Finetuned from model:** [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct)
27
+ - **Dataset Used:** [skshmjn/mongodb-chat-query](https://huggingface.co/datasets/skshmjn/mongodb-chat-query)
28
+ - **Supports:** Transformers & GGUF (for fast inference on CPU/GPU)
29
 
30
+ ## 🚀 **Model Overview**
31
+ This model is designed to **generate MongoDB queries** from natural language prompts. It supports:
32
+ - **Basic CRUD operations:** `find`, `insert`, `update`, `delete`
33
+ - **Aggregation Pipelines:** `$group`, `$match`, `$lookup`, `$sort`, etc.
34
+ - **Indexing & Performance Queries**
35
+ - **Nested Queries & Joins (`$lookup`)**
36
 
37
+ Trained using **Unsloth** for efficient fine-tuning and **GGUF quantization** for fast inference.
38
+
39
+ ---
40
+
41
+ ## 📌 **Example Usage (Transformers)**
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+
45
+ model_name = "skshmjn/Llama-3.2-3B-Mongo-Instruct"
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+ model = AutoModelForCausalLM.from_pretrained(model_name)
48
+ schema = {} // Pass your mongodb schema here or leave empty for generic queries
49
+
50
+ prompt = "Here is mongodb schema {schema} and Find all employees older than 30 in the 'employees' collection."
51
+ inputs = tokenizer(prompt, return_tensors="pt")
52
+
53
+ output = model.generate(**inputs, max_length=100)
54
+ query = tokenizer.decode(output[0], skip_special_tokens=True)
55
+
56
+ print(query)