File size: 26,118 Bytes
992a607 06cc10a 992a607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
---
language:
- zh
license: mit
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:225000
- loss:MultipleNegativesRankingLoss
base_model: richinfoai/ritrieve_zh_v1
widget:
- source_sentence: 下班后和同事直奔常去的那家火锅店,热热闹闹地涮了一晚上。
sentences:
- 联延掩四远,赫弈成洪炉。
- 把酒仰问天,古今谁不死。
- 骑出平阳里,筵开卫尉家。
- source_sentence: 站在山顶看日出时,突然觉得世俗烦恼都不重要了。
sentences:
- 郁没二悲魂,萧条犹在否。
- 封疆亲日月,邑里出王公。
- 心朝玉皇帝,貌似紫阳人。
- source_sentence: 隔壁老张家两个儿子都被征走了,现在天天以泪洗面。
sentences:
- 若教为女嫁东风,除却黄莺难匹配。
- 山东今岁点行频,几处冤魂哭虏尘。
- 远图尝画地,超拜乃登坛。
- source_sentence: 边境小镇常年没人驻守,只有老李一个人在山脚下种地。
sentences:
- 海徼长无戍,湘山独种畬。
- 高名宋玉遗闲丽,作赋兰成绝盛才。
- 九衢南面色,苍翠绝纤尘。
- source_sentence: 微信列表翻到底,能说真心话的居然只剩快递群。
sentences:
- 黛消波月空蟾影,歌息梁尘有梵声。
- 代情难重论,人事好乖移。
- 时应记得长安事,曾向文场属思劳。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# RETRIEVE ZH 微调:古诗 ↔ 现代语
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [richinfoai/ritrieve_zh_v1](https://huggingface.co/richinfoai/ritrieve_zh_v1) on the json dataset. It maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [richinfoai/ritrieve_zh_v1](https://huggingface.co/richinfoai/ritrieve_zh_v1) <!-- at revision f8d5a707656c55705027678e311f9202c8ced12c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1792 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** zh
- **License:** mit
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'微信列表翻到底,能说真心话的居然只剩快递群。',
'代情难重论,人事好乖移。',
'时应记得长安事,曾向文场属思劳。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1792]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 225,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 14 tokens</li><li>mean: 26.51 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.23 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.34 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------|:------------------------------|:------------------------------|
| <code>整个人蜷在阳光里,连毛衣都晒出一股蓬松的香味。</code> | <code>箕踞拥裘坐,半身在日旸。</code> | <code>洛阳女儿对门居,才可容颜十五馀。</code> |
| <code>好像所有的好事都约好了一样,今天一起找上门来。</code> | <code>临终极乐宝华迎,观音势至俱来至。</code> | <code>身没南朝宅已荒,邑人犹赏旧风光。</code> |
| <code>大家都觉得她太娇气,只有你一直小心照顾着她。</code> | <code>弱质人皆弃,唯君手自栽。</code> | <code>秦筑长城城已摧,汉武北上单于台。</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### json
* Dataset: json
* Size: 25,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 26.86 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.31 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.3 tokens</li><li>max: 26 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------|:--------------------------|:------------------------------|
| <code>看着街边那些孤零零的老人,真怕自己以后也变成那样。</code> | <code>垂白乱南翁,委身希北叟。</code> | <code>熏香荀令偏怜少,傅粉何郎不解愁。</code> |
| <code>关了灯,屋里黑漆漆的,就听见外面秋虫和落叶在说话。</code> | <code>秋虫与秋叶,一夜隔窗闻。</code> | <code>未能穷意义,岂敢求瑕痕。</code> |
| <code>虽然爷爷不在了,但他教我做人的道理永远记在心里。</code> | <code>惟孝虽遥,灵规不朽。</code> | <code>巧类鸳机织,光攒麝月团。</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 6
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0284 | 50 | 4.4241 | - |
| 0.0569 | 100 | 3.4415 | - |
| 0.0853 | 150 | 2.6725 | - |
| 0.1138 | 200 | 2.4137 | 2.2686 |
| 0.1422 | 250 | 2.2701 | - |
| 0.1706 | 300 | 2.1523 | - |
| 0.1991 | 350 | 2.0805 | - |
| 0.2275 | 400 | 2.0513 | 1.9506 |
| 0.2560 | 450 | 2.0048 | - |
| 0.2844 | 500 | 1.9552 | - |
| 0.3129 | 550 | 1.8778 | - |
| 0.3413 | 600 | 1.8549 | 1.7630 |
| 0.3697 | 650 | 1.822 | - |
| 0.3982 | 700 | 1.8128 | - |
| 0.4266 | 750 | 1.7742 | - |
| 0.4551 | 800 | 1.7076 | 1.6331 |
| 0.4835 | 850 | 1.6919 | - |
| 0.5119 | 900 | 1.64 | - |
| 0.5404 | 950 | 1.6291 | - |
| 0.5688 | 1000 | 1.5881 | 1.5368 |
| 0.5973 | 1050 | 1.6018 | - |
| 0.6257 | 1100 | 1.5664 | - |
| 0.6542 | 1150 | 1.5545 | - |
| 0.6826 | 1200 | 1.5292 | 1.4532 |
| 0.7110 | 1250 | 1.5166 | - |
| 0.7395 | 1300 | 1.517 | - |
| 0.7679 | 1350 | 1.4639 | - |
| 0.7964 | 1400 | 1.4729 | 1.3687 |
| 0.8248 | 1450 | 1.4501 | - |
| 0.8532 | 1500 | 1.3932 | - |
| 0.8817 | 1550 | 1.4063 | - |
| 0.9101 | 1600 | 1.3825 | 1.3003 |
| 0.9386 | 1650 | 1.3647 | - |
| 0.9670 | 1700 | 1.3431 | - |
| 0.9954 | 1750 | 1.3417 | - |
| 1.0239 | 1800 | 1.0839 | 1.2431 |
| 1.0523 | 1850 | 1.0801 | - |
| 1.0808 | 1900 | 1.0577 | - |
| 1.1092 | 1950 | 1.0159 | - |
| 1.1377 | 2000 | 1.0239 | 1.2132 |
| 1.1661 | 2050 | 1.0335 | - |
| 1.1945 | 2100 | 1.0117 | - |
| 1.2230 | 2150 | 1.0343 | - |
| 1.2514 | 2200 | 1.0193 | 1.1808 |
| 1.2799 | 2250 | 1.0235 | - |
| 1.3083 | 2300 | 0.9949 | - |
| 1.3367 | 2350 | 1.0058 | - |
| 1.3652 | 2400 | 1.0039 | 1.1428 |
| 1.3936 | 2450 | 1.0164 | - |
| 1.4221 | 2500 | 0.9934 | - |
| 1.4505 | 2550 | 0.9777 | - |
| 1.4790 | 2600 | 0.9753 | 1.1101 |
| 1.5074 | 2650 | 0.9621 | - |
| 1.5358 | 2700 | 0.9756 | - |
| 1.5643 | 2750 | 0.9725 | - |
| 1.5927 | 2800 | 0.9649 | 1.0813 |
| 1.6212 | 2850 | 0.9652 | - |
| 1.6496 | 2900 | 0.9861 | - |
| 1.6780 | 2950 | 0.916 | - |
| 1.7065 | 3000 | 0.9417 | 1.0523 |
| 1.7349 | 3050 | 0.9599 | - |
| 1.7634 | 3100 | 0.9275 | - |
| 1.7918 | 3150 | 0.9247 | - |
| 1.8203 | 3200 | 0.9417 | 1.0306 |
| 1.8487 | 3250 | 0.9275 | - |
| 1.8771 | 3300 | 0.9431 | - |
| 1.9056 | 3350 | 0.9147 | - |
| 1.9340 | 3400 | 0.8957 | 1.0051 |
| 1.9625 | 3450 | 0.9169 | - |
| 1.9909 | 3500 | 0.9079 | - |
| 2.0193 | 3550 | 0.7057 | - |
| 2.0478 | 3600 | 0.6037 | 0.9944 |
| 2.0762 | 3650 | 0.5888 | - |
| 2.1047 | 3700 | 0.6134 | - |
| 2.1331 | 3750 | 0.6209 | - |
| 2.1615 | 3800 | 0.6163 | 0.9836 |
| 2.1900 | 3850 | 0.6271 | - |
| 2.2184 | 3900 | 0.629 | - |
| 2.2469 | 3950 | 0.6041 | - |
| 2.2753 | 4000 | 0.622 | 0.9792 |
| 2.3038 | 4050 | 0.6175 | - |
| 2.3322 | 4100 | 0.627 | - |
| 2.3606 | 4150 | 0.6339 | - |
| 2.3891 | 4200 | 0.6325 | 0.9643 |
| 2.4175 | 4250 | 0.6044 | - |
| 2.4460 | 4300 | 0.6124 | - |
| 2.4744 | 4350 | 0.6326 | - |
| 2.5028 | 4400 | 0.6349 | 0.9462 |
| 2.5313 | 4450 | 0.6286 | - |
| 2.5597 | 4500 | 0.6325 | - |
| 2.5882 | 4550 | 0.6399 | - |
| 2.6166 | 4600 | 0.6184 | 0.9317 |
| 2.6451 | 4650 | 0.6292 | - |
| 2.6735 | 4700 | 0.6017 | - |
| 2.7019 | 4750 | 0.6305 | - |
| 2.7304 | 4800 | 0.6152 | 0.9213 |
| 2.7588 | 4850 | 0.5972 | - |
| 2.7873 | 4900 | 0.6048 | - |
| 2.8157 | 4950 | 0.6096 | - |
| 2.8441 | 5000 | 0.6156 | 0.9073 |
| 2.8726 | 5050 | 0.5942 | - |
| 2.9010 | 5100 | 0.592 | - |
| 2.9295 | 5150 | 0.6088 | - |
| 2.9579 | 5200 | 0.5941 | 0.8950 |
| 2.9863 | 5250 | 0.6161 | - |
| 3.0148 | 5300 | 0.5021 | - |
| 3.0432 | 5350 | 0.4116 | - |
| 3.0717 | 5400 | 0.3936 | 0.9009 |
| 3.1001 | 5450 | 0.4193 | - |
| 3.1286 | 5500 | 0.422 | - |
| 3.1570 | 5550 | 0.432 | - |
| 3.1854 | 5600 | 0.4281 | 0.8985 |
| 3.2139 | 5650 | 0.4091 | - |
| 3.2423 | 5700 | 0.4305 | - |
| 3.2708 | 5750 | 0.4203 | - |
| 3.2992 | 5800 | 0.4193 | 0.8869 |
| 3.3276 | 5850 | 0.4238 | - |
| 3.3561 | 5900 | 0.4274 | - |
| 3.3845 | 5950 | 0.4124 | - |
| 3.4130 | 6000 | 0.4241 | 0.8842 |
| 3.4414 | 6050 | 0.427 | - |
| 3.4699 | 6100 | 0.4275 | - |
| 3.4983 | 6150 | 0.4152 | - |
| 3.5267 | 6200 | 0.4247 | 0.8733 |
| 3.5552 | 6250 | 0.4111 | - |
| 3.5836 | 6300 | 0.4396 | - |
| 3.6121 | 6350 | 0.4122 | - |
| 3.6405 | 6400 | 0.4252 | 0.8657 |
| 3.6689 | 6450 | 0.4167 | - |
| 3.6974 | 6500 | 0.4282 | - |
| 3.7258 | 6550 | 0.411 | - |
| 3.7543 | 6600 | 0.4273 | 0.8540 |
| 3.7827 | 6650 | 0.4327 | - |
| 3.8111 | 6700 | 0.431 | - |
| 3.8396 | 6750 | 0.4347 | - |
| 3.8680 | 6800 | 0.4264 | 0.8523 |
| 3.8965 | 6850 | 0.4213 | - |
| 3.9249 | 6900 | 0.4285 | - |
| 3.9534 | 6950 | 0.4138 | - |
| 3.9818 | 7000 | 0.4051 | 0.8407 |
| 4.0102 | 7050 | 0.3779 | - |
| 4.0387 | 7100 | 0.2957 | - |
| 4.0671 | 7150 | 0.2939 | - |
| 4.0956 | 7200 | 0.3065 | 0.8590 |
| 4.1240 | 7250 | 0.3081 | - |
| 4.1524 | 7300 | 0.3043 | - |
| 4.1809 | 7350 | 0.3176 | - |
| 4.2093 | 7400 | 0.3067 | 0.8487 |
| 4.2378 | 7450 | 0.299 | - |
| 4.2662 | 7500 | 0.3106 | - |
| 4.2947 | 7550 | 0.3062 | - |
| 4.3231 | 7600 | 0.3153 | 0.8498 |
| 4.3515 | 7650 | 0.3206 | - |
| 4.3800 | 7700 | 0.3202 | - |
| 4.4084 | 7750 | 0.3167 | - |
| 4.4369 | 7800 | 0.3044 | 0.8426 |
| 4.4653 | 7850 | 0.3015 | - |
| 4.4937 | 7900 | 0.3157 | - |
| 4.5222 | 7950 | 0.3109 | - |
| 4.5506 | 8000 | 0.3164 | 0.8385 |
| 4.5791 | 8050 | 0.2996 | - |
| 4.6075 | 8100 | 0.3247 | - |
| 4.6359 | 8150 | 0.3093 | - |
| 4.6644 | 8200 | 0.3017 | 0.8294 |
| 4.6928 | 8250 | 0.3075 | - |
| 4.7213 | 8300 | 0.3006 | - |
| 4.7497 | 8350 | 0.3134 | - |
| 4.7782 | 8400 | 0.3111 | 0.8249 |
| 4.8066 | 8450 | 0.3165 | - |
| 4.8350 | 8500 | 0.3071 | - |
| 4.8635 | 8550 | 0.3017 | - |
| 4.8919 | 8600 | 0.3092 | 0.8225 |
| 4.9204 | 8650 | 0.3 | - |
| 4.9488 | 8700 | 0.2999 | - |
| 4.9772 | 8750 | 0.3116 | - |
| 5.0057 | 8800 | 0.3046 | 0.8173 |
| 5.0341 | 8850 | 0.2501 | - |
| 5.0626 | 8900 | 0.2443 | - |
| 5.0910 | 8950 | 0.2338 | - |
| 5.1195 | 9000 | 0.2382 | 0.8248 |
| 5.1479 | 9050 | 0.2524 | - |
| 5.1763 | 9100 | 0.2427 | - |
| 5.2048 | 9150 | 0.2512 | - |
| 5.2332 | 9200 | 0.2377 | 0.8218 |
| 5.2617 | 9250 | 0.2458 | - |
| 5.2901 | 9300 | 0.2515 | - |
| 5.3185 | 9350 | 0.2453 | - |
| 5.3470 | 9400 | 0.244 | 0.8226 |
| 5.3754 | 9450 | 0.2389 | - |
| 5.4039 | 9500 | 0.253 | - |
| 5.4323 | 9550 | 0.2509 | - |
| 5.4608 | 9600 | 0.2492 | 0.8198 |
| 5.4892 | 9650 | 0.2379 | - |
| 5.5176 | 9700 | 0.247 | - |
| 5.5461 | 9750 | 0.2419 | - |
| 5.5745 | 9800 | 0.244 | 0.8150 |
| 5.6030 | 9850 | 0.2498 | - |
| 5.6314 | 9900 | 0.2381 | - |
| 5.6598 | 9950 | 0.2425 | - |
| 5.6883 | 10000 | 0.2451 | 0.8148 |
| 5.7167 | 10050 | 0.2468 | - |
| 5.7452 | 10100 | 0.2404 | - |
| 5.7736 | 10150 | 0.2397 | - |
| 5.8020 | 10200 | 0.2417 | 0.8124 |
| 5.8305 | 10250 | 0.2446 | - |
| 5.8589 | 10300 | 0.2443 | - |
| 5.8874 | 10350 | 0.2465 | - |
| 5.9158 | 10400 | 0.2472 | 0.8121 |
</details>
### Framework Versions
- Python: 3.10.16
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |