Nextplace / MLBaseModelDriver.py
sm4rtdev's picture
Update MLBaseModelDriver.py
573aeab verified
raw
history blame
6.61 kB
import torch
import sys
import pandas as pd
pd.set_option('future.no_silent_downcasting', True)
from typing import TypedDict, Optional, Tuple
import datetime
import math
import importlib.util
from huggingface_hub import hf_hub_download
import pickle
"""
Data container class representing the data shape of the synapse coming into `run_inference`
"""
class ProcessedSynapse(TypedDict):
id: Optional[str]
nextplace_id: Optional[str]
property_id: Optional[str]
listing_id: Optional[str]
address: Optional[str]
city: Optional[str]
state: Optional[str]
zip_code: Optional[str]
price: Optional[float]
beds: Optional[int]
baths: Optional[float]
sqft: Optional[int]
lot_size: Optional[int]
year_built: Optional[int]
days_on_market: Optional[int]
latitude: Optional[float]
longitude: Optional[float]
property_type: Optional[str]
last_sale_date: Optional[str]
hoa_dues: Optional[float]
query_date: Optional[str]
"""
This class must do two things
1) The constructor must load the model
2) This class must implement a method called `run_inference` that takes the input data and returns a tuple
of float, str representing the predicted sale price and the predicted sale date.
"""
class MLBaseModelDriver:
def __init__(self):
self.model, self.label_encoder, self.scaler = self.load_model()
def load_model(self) -> Tuple[any, any, any]:
"""
load the model and model parameters
:return: model, label encoder, and scaler
"""
print(f"Loading model...")
model_file, scaler_file, label_encoders_file, model_class_file = self._download_model_files()
model_class = self._import_model_class(model_class_file)
model = model_class(input_dim=4)
state_dict = torch.load(model_file, weights_only=False)
model.load_state_dict(state_dict)
model.eval()
# Load additional artifacts
with open(scaler_file, 'rb') as f:
scaler = pickle.load(f)
with open(label_encoders_file, 'rb') as f:
label_encoders = pickle.load(f)
print(f"Model Loaded.")
return model, label_encoders, scaler
def _download_model_files(self) -> Tuple[str, str, str, str]:
"""
download files from hugging face
:return: downloaded files
"""
model_path = "Nickel5HF/NextPlace"
# Download the model files from the Hugging Face Hub
model_file = hf_hub_download(repo_id=model_path, filename="model_files/real_estate_model.pth")
scaler_file = hf_hub_download(repo_id=model_path, filename="model_files/scaler.pkl")
label_encoders_file = hf_hub_download(repo_id=model_path, filename="model_files/label_encoder.pkl")
model_class_file = hf_hub_download(repo_id=model_path, filename="MLBaseModel.py")
# Load the model and artifacts
return model_file, scaler_file, label_encoders_file, model_class_file
def _import_model_class(self, model_class_file):
"""
import the model class and instantiate it
:param model_class_file: file path to the model class
:return: None
"""
# Reference docs here: https://docs.python.org/3/library/importlib.html#importlib.util.spec_from_loader
module_name = "MLBaseModel"
spec = importlib.util.spec_from_file_location(module_name, model_class_file)
model_module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = model_module
spec.loader.exec_module(model_module)
if hasattr(model_module, "MLBaseModel"):
return model_module.MLBaseModel
else:
raise AttributeError(f"The module does not contain a class named 'MLBaseModel'")
def run_inference(self, input_data: ProcessedSynapse) -> Tuple[float, str]:
"""
run inference using the MLBaseModel
:param input_data: synapse from the validator
:return: the predicted sale price and date
"""
input_tensor = self._preprocess_input(input_data)
with torch.no_grad():
prediction = self.model(input_tensor)
predicted_sale_price, predicted_days_on_market = prediction[0].numpy()
predicted_days_on_market = math.floor(predicted_days_on_market)
predicted_sale_date = self._sale_date_predictor(input_data['days_on_market'], predicted_days_on_market)
return float(predicted_sale_price), predicted_sale_date.strftime("%Y-%m-%d")
def _sale_date_predictor(self, days_on_market: Optional[int], predicted_days_on_market: int) -> datetime.date:
"""
convert predicted days on market to a sale date
:param days_on_market: number of days this home has been on the market
:param predicted_days_on_market: the predicted number of days for this home on the market
:return: the predicted sale date
"""
if days_on_market is None:
days_on_market = 0
if days_on_market < predicted_days_on_market:
days_until_sale = predicted_days_on_market - days_on_market
sale_date = datetime.date.today() + datetime.timedelta(days=days_until_sale)
return sale_date
else:
return datetime.date.today() + datetime.timedelta(days=1)
def _preprocess_input(self, data: ProcessedSynapse) -> torch.tensor:
"""
preprocess the input for inference
:param data: synapse from the validator
:return: tensor representing the synapse
"""
df = pd.DataFrame([data])
# Set defaults
default_beds = 3
default_sqft = 1500.0
default_property_type = 6 # ensure it's int, not str
default_price = 300000.0 # optional: fallback if price is NaN
# Clean and fill fields
df['beds'] = pd.to_numeric(df['beds'], errors='coerce').fillna(default_beds).astype(int)
df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
df['price'] = pd.to_numeric(df['price'], errors='coerce').fillna(default_price)
df['property_type'] = pd.to_numeric(df['property_type'], errors='coerce').fillna(default_property_type).astype(int)
# Scale numeric features
df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
# Final input matrix
X = df[['beds', 'sqft', 'property_type', 'price']].astype('float32')
input_tensor = torch.tensor(X.values, dtype=torch.float32)
return input_tensor