Update MLBaseModelDriver.py
Browse files- MLBaseModelDriver.py +159 -159
MLBaseModelDriver.py
CHANGED
@@ -1,159 +1,159 @@
|
|
1 |
-
import torch
|
2 |
-
import sys
|
3 |
-
import pandas as pd
|
4 |
-
from typing import TypedDict, Optional, Tuple
|
5 |
-
import datetime
|
6 |
-
import math
|
7 |
-
import importlib.util
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
import pickle
|
10 |
-
|
11 |
-
|
12 |
-
"""
|
13 |
-
Data container class representing the data shape of the synapse coming into `run_inference`
|
14 |
-
"""
|
15 |
-
|
16 |
-
|
17 |
-
class ProcessedSynapse(TypedDict):
|
18 |
-
id: Optional[str]
|
19 |
-
nextplace_id: Optional[str]
|
20 |
-
property_id: Optional[str]
|
21 |
-
listing_id: Optional[str]
|
22 |
-
address: Optional[str]
|
23 |
-
city: Optional[str]
|
24 |
-
state: Optional[str]
|
25 |
-
zip_code: Optional[str]
|
26 |
-
price: Optional[float]
|
27 |
-
beds: Optional[int]
|
28 |
-
baths: Optional[float]
|
29 |
-
sqft: Optional[int]
|
30 |
-
lot_size: Optional[int]
|
31 |
-
year_built: Optional[int]
|
32 |
-
days_on_market: Optional[int]
|
33 |
-
latitude: Optional[float]
|
34 |
-
longitude: Optional[float]
|
35 |
-
property_type: Optional[str]
|
36 |
-
last_sale_date: Optional[str]
|
37 |
-
hoa_dues: Optional[float]
|
38 |
-
query_date: Optional[str]
|
39 |
-
|
40 |
-
|
41 |
-
"""
|
42 |
-
This class must do two things
|
43 |
-
1) The constructor must load the model
|
44 |
-
2) This class must implement a method called `run_inference` that takes the input data and returns a tuple
|
45 |
-
of float, str representing the predicted sale price and the predicted sale date.
|
46 |
-
"""
|
47 |
-
|
48 |
-
|
49 |
-
class MLBaseModelDriver:
|
50 |
-
|
51 |
-
def __init__(self):
|
52 |
-
self.model, self.label_encoder, self.scaler = self.load_model()
|
53 |
-
|
54 |
-
def load_model(self) -> Tuple[any, any, any]:
|
55 |
-
"""
|
56 |
-
load the model and model parameters
|
57 |
-
:return: model, label encoder, and scaler
|
58 |
-
"""
|
59 |
-
print(f"Loading model...")
|
60 |
-
model_file, scaler_file, label_encoders_file, model_class_file = self._download_model_files()
|
61 |
-
model_class = self._import_model_class(model_class_file)
|
62 |
-
|
63 |
-
model = model_class(input_dim=4)
|
64 |
-
state_dict = torch.load(model_file, weights_only=False)
|
65 |
-
model.load_state_dict(state_dict)
|
66 |
-
model.eval()
|
67 |
-
|
68 |
-
# Load additional artifacts
|
69 |
-
with open(scaler_file, 'rb') as f:
|
70 |
-
scaler = pickle.load(f)
|
71 |
-
|
72 |
-
with open(label_encoders_file, 'rb') as f:
|
73 |
-
label_encoders = pickle.load(f)
|
74 |
-
|
75 |
-
print(f"Model Loaded.")
|
76 |
-
return model, label_encoders, scaler
|
77 |
-
|
78 |
-
def _download_model_files(self) -> Tuple[str, str, str, str]:
|
79 |
-
"""
|
80 |
-
download files from hugging face
|
81 |
-
:return: downloaded files
|
82 |
-
"""
|
83 |
-
model_path = "Nickel5HF/NextPlace"
|
84 |
-
|
85 |
-
# Download the model files from the Hugging Face Hub
|
86 |
-
model_file = hf_hub_download(repo_id=model_path, filename="model_files/real_estate_model.pth")
|
87 |
-
scaler_file = hf_hub_download(repo_id=model_path, filename="model_files/scaler.pkl")
|
88 |
-
label_encoders_file = hf_hub_download(repo_id=model_path, filename="model_files/label_encoder.pkl")
|
89 |
-
model_class_file = hf_hub_download(repo_id=model_path, filename="MLBaseModel.py")
|
90 |
-
|
91 |
-
# Load the model and artifacts
|
92 |
-
return model_file, scaler_file, label_encoders_file, model_class_file
|
93 |
-
|
94 |
-
def _import_model_class(self, model_class_file):
|
95 |
-
"""
|
96 |
-
import the model class and instantiate it
|
97 |
-
:param model_class_file: file path to the model class
|
98 |
-
:return: None
|
99 |
-
"""
|
100 |
-
# Reference docs here: https://docs.python.org/3/library/importlib.html#importlib.util.spec_from_loader
|
101 |
-
module_name = "MLBaseModel"
|
102 |
-
spec = importlib.util.spec_from_file_location(module_name, model_class_file)
|
103 |
-
model_module = importlib.util.module_from_spec(spec)
|
104 |
-
sys.modules[module_name] = model_module
|
105 |
-
spec.loader.exec_module(model_module)
|
106 |
-
|
107 |
-
if hasattr(model_module, "MLBaseModel"):
|
108 |
-
return model_module.MLBaseModel
|
109 |
-
else:
|
110 |
-
raise AttributeError(f"The module does not contain a class named 'MLBaseModel'")
|
111 |
-
|
112 |
-
def run_inference(self, input_data: ProcessedSynapse) -> Tuple[float, str]:
|
113 |
-
"""
|
114 |
-
run inference using the MLBaseModel
|
115 |
-
:param input_data: synapse from the validator
|
116 |
-
:return: the predicted sale price and date
|
117 |
-
"""
|
118 |
-
input_tensor = self._preprocess_input(input_data)
|
119 |
-
|
120 |
-
with torch.no_grad():
|
121 |
-
prediction = self.model(input_tensor)
|
122 |
-
predicted_sale_price, predicted_days_on_market = prediction[0].numpy()
|
123 |
-
predicted_days_on_market = math.floor(predicted_days_on_market)
|
124 |
-
predicted_sale_date = self._sale_date_predictor(input_data['days_on_market'], predicted_days_on_market)
|
125 |
-
|
126 |
-
return float(predicted_sale_price), predicted_sale_date.strftime("%Y-%m-%d")
|
127 |
-
|
128 |
-
def _sale_date_predictor(self, days_on_market: int, predicted_days_on_market: int) -> datetime.date:
|
129 |
-
"""
|
130 |
-
convert predicted days on market to a sale date
|
131 |
-
:param days_on_market: number of days this home has been on the market
|
132 |
-
:param predicted_days_on_market: the predicted number of days for this home on the market
|
133 |
-
:return: the predicted sale date
|
134 |
-
"""
|
135 |
-
if days_on_market < predicted_days_on_market:
|
136 |
-
days_until_sale = predicted_days_on_market - days_on_market
|
137 |
-
sale_date = datetime.date.today() + datetime.timedelta(days=days_until_sale)
|
138 |
-
return sale_date
|
139 |
-
else:
|
140 |
-
return datetime.date.today() + datetime.timedelta(days=1)
|
141 |
-
|
142 |
-
def _preprocess_input(self, data: ProcessedSynapse) -> torch.tensor:
|
143 |
-
"""
|
144 |
-
preprocess the input for inference
|
145 |
-
:param data: synapse from the validator
|
146 |
-
:return: tensor representing the synapse
|
147 |
-
"""
|
148 |
-
df = pd.DataFrame([data])
|
149 |
-
default_beds = 3
|
150 |
-
default_sqft = 1500.0
|
151 |
-
default_property_type = '6'
|
152 |
-
df['beds'] = df['beds'].fillna(default_beds)
|
153 |
-
df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
|
154 |
-
df['property_type'] = df['property_type'].fillna(default_property_type)
|
155 |
-
df['property_type'] = df['property_type'].astype(int)
|
156 |
-
df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
|
157 |
-
X = df[['beds', 'sqft', 'property_type', 'price']]
|
158 |
-
input_tensor = torch.tensor(X.values, dtype=torch.float32)
|
159 |
-
return input_tensor
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
import pandas as pd
|
4 |
+
from typing import TypedDict, Optional, Tuple
|
5 |
+
import datetime
|
6 |
+
import math
|
7 |
+
import importlib.util
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
|
12 |
+
"""
|
13 |
+
Data container class representing the data shape of the synapse coming into `run_inference`
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
class ProcessedSynapse(TypedDict):
|
18 |
+
id: Optional[str]
|
19 |
+
nextplace_id: Optional[str]
|
20 |
+
property_id: Optional[str]
|
21 |
+
listing_id: Optional[str]
|
22 |
+
address: Optional[str]
|
23 |
+
city: Optional[str]
|
24 |
+
state: Optional[str]
|
25 |
+
zip_code: Optional[str]
|
26 |
+
price: Optional[float]
|
27 |
+
beds: Optional[int]
|
28 |
+
baths: Optional[float]
|
29 |
+
sqft: Optional[int]
|
30 |
+
lot_size: Optional[int]
|
31 |
+
year_built: Optional[int]
|
32 |
+
days_on_market: Optional[int]
|
33 |
+
latitude: Optional[float]
|
34 |
+
longitude: Optional[float]
|
35 |
+
property_type: Optional[str]
|
36 |
+
last_sale_date: Optional[str]
|
37 |
+
hoa_dues: Optional[float]
|
38 |
+
query_date: Optional[str]
|
39 |
+
|
40 |
+
|
41 |
+
"""
|
42 |
+
This class must do two things
|
43 |
+
1) The constructor must load the model
|
44 |
+
2) This class must implement a method called `run_inference` that takes the input data and returns a tuple
|
45 |
+
of float, str representing the predicted sale price and the predicted sale date.
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
class MLBaseModelDriver:
|
50 |
+
|
51 |
+
def __init__(self):
|
52 |
+
self.model, self.label_encoder, self.scaler = self.load_model()
|
53 |
+
|
54 |
+
def load_model(self) -> Tuple[any, any, any]:
|
55 |
+
"""
|
56 |
+
load the model and model parameters
|
57 |
+
:return: model, label encoder, and scaler
|
58 |
+
"""
|
59 |
+
print(f"Loading model...")
|
60 |
+
model_file, scaler_file, label_encoders_file, model_class_file = self._download_model_files()
|
61 |
+
model_class = self._import_model_class(model_class_file)
|
62 |
+
|
63 |
+
model = model_class(input_dim=4)
|
64 |
+
state_dict = torch.load(model_file, weights_only=False)
|
65 |
+
model.load_state_dict(state_dict)
|
66 |
+
model.eval()
|
67 |
+
|
68 |
+
# Load additional artifacts
|
69 |
+
with open(scaler_file, 'rb') as f:
|
70 |
+
scaler = pickle.load(f)
|
71 |
+
|
72 |
+
with open(label_encoders_file, 'rb') as f:
|
73 |
+
label_encoders = pickle.load(f)
|
74 |
+
|
75 |
+
print(f"Model Loaded.")
|
76 |
+
return model, label_encoders, scaler
|
77 |
+
|
78 |
+
def _download_model_files(self) -> Tuple[str, str, str, str]:
|
79 |
+
"""
|
80 |
+
download files from hugging face
|
81 |
+
:return: downloaded files
|
82 |
+
"""
|
83 |
+
model_path = "Nickel5HF/NextPlace"
|
84 |
+
|
85 |
+
# Download the model files from the Hugging Face Hub
|
86 |
+
model_file = hf_hub_download(repo_id=model_path, filename="model_files/real_estate_model.pth")
|
87 |
+
scaler_file = hf_hub_download(repo_id=model_path, filename="model_files/scaler.pkl")
|
88 |
+
label_encoders_file = hf_hub_download(repo_id=model_path, filename="model_files/label_encoder.pkl")
|
89 |
+
model_class_file = hf_hub_download(repo_id=model_path, filename="MLBaseModel.py")
|
90 |
+
|
91 |
+
# Load the model and artifacts
|
92 |
+
return model_file, scaler_file, label_encoders_file, model_class_file
|
93 |
+
|
94 |
+
def _import_model_class(self, model_class_file):
|
95 |
+
"""
|
96 |
+
import the model class and instantiate it
|
97 |
+
:param model_class_file: file path to the model class
|
98 |
+
:return: None
|
99 |
+
"""
|
100 |
+
# Reference docs here: https://docs.python.org/3/library/importlib.html#importlib.util.spec_from_loader
|
101 |
+
module_name = "MLBaseModel"
|
102 |
+
spec = importlib.util.spec_from_file_location(module_name, model_class_file)
|
103 |
+
model_module = importlib.util.module_from_spec(spec)
|
104 |
+
sys.modules[module_name] = model_module
|
105 |
+
spec.loader.exec_module(model_module)
|
106 |
+
|
107 |
+
if hasattr(model_module, "MLBaseModel"):
|
108 |
+
return model_module.MLBaseModel
|
109 |
+
else:
|
110 |
+
raise AttributeError(f"The module does not contain a class named 'MLBaseModel'")
|
111 |
+
|
112 |
+
def run_inference(self, input_data: ProcessedSynapse) -> Tuple[float, str]:
|
113 |
+
"""
|
114 |
+
run inference using the MLBaseModel
|
115 |
+
:param input_data: synapse from the validator
|
116 |
+
:return: the predicted sale price and date
|
117 |
+
"""
|
118 |
+
input_tensor = self._preprocess_input(input_data)
|
119 |
+
|
120 |
+
with torch.no_grad():
|
121 |
+
prediction = self.model(input_tensor)
|
122 |
+
predicted_sale_price, predicted_days_on_market = prediction[0].numpy()
|
123 |
+
predicted_days_on_market = math.floor(predicted_days_on_market)
|
124 |
+
predicted_sale_date = self._sale_date_predictor(input_data['days_on_market'], predicted_days_on_market)
|
125 |
+
|
126 |
+
return float(predicted_sale_price), predicted_sale_date.strftime("%Y-%m-%d")
|
127 |
+
|
128 |
+
def _sale_date_predictor(self, days_on_market: int, predicted_days_on_market: int) -> datetime.date:
|
129 |
+
"""
|
130 |
+
convert predicted days on market to a sale date
|
131 |
+
:param days_on_market: number of days this home has been on the market
|
132 |
+
:param predicted_days_on_market: the predicted number of days for this home on the market
|
133 |
+
:return: the predicted sale date
|
134 |
+
"""
|
135 |
+
if days_on_market < predicted_days_on_market:
|
136 |
+
days_until_sale = predicted_days_on_market - days_on_market
|
137 |
+
sale_date = datetime.date.today() + datetime.timedelta(days=days_until_sale)
|
138 |
+
return sale_date
|
139 |
+
else:
|
140 |
+
return datetime.date.today() + datetime.timedelta(days=1)
|
141 |
+
|
142 |
+
def _preprocess_input(self, data: ProcessedSynapse) -> torch.tensor:
|
143 |
+
"""
|
144 |
+
preprocess the input for inference
|
145 |
+
:param data: synapse from the validator
|
146 |
+
:return: tensor representing the synapse
|
147 |
+
"""
|
148 |
+
df = pd.DataFrame([data])
|
149 |
+
default_beds = 3
|
150 |
+
default_sqft = 1500.0
|
151 |
+
default_property_type = '6'
|
152 |
+
df['beds'] = df['beds'].fillna(default_beds).infer_objects(copy=False)
|
153 |
+
df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
|
154 |
+
df['property_type'] = df['property_type'].fillna(default_property_type)
|
155 |
+
df['property_type'] = df['property_type'].astype(int)
|
156 |
+
df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
|
157 |
+
X = df[['beds', 'sqft', 'property_type', 'price']]
|
158 |
+
input_tensor = torch.tensor(X.values, dtype=torch.float32)
|
159 |
+
return input_tensor
|