sm4rtdev commited on
Commit
bbd11b7
·
verified ·
1 Parent(s): cfcfa60

Update MLBaseModelDriver.py

Browse files
Files changed (1) hide show
  1. MLBaseModelDriver.py +2 -8
MLBaseModelDriver.py CHANGED
@@ -1,14 +1,12 @@
1
  import torch
2
  import sys
3
  import pandas as pd
4
- pd.set_option('future.no_silent_downcasting', True)
5
  from typing import TypedDict, Optional, Tuple
6
  import datetime
7
  import math
8
  import importlib.util
9
  from huggingface_hub import hf_hub_download
10
  import pickle
11
- import time
12
 
13
 
14
  """
@@ -151,15 +149,11 @@ class MLBaseModelDriver:
151
  default_beds = 3
152
  default_sqft = 1500.0
153
  default_property_type = '6'
154
-
155
- # Fill and type inference
156
  df['beds'] = df['beds'].fillna(default_beds).infer_objects(copy=False).astype(int)
157
  df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
158
- df['property_type'] = df['property_type'].fillna(default_property_type).infer_objects(copy=False)
159
  df['property_type'] = df['property_type'].astype(int)
160
-
161
- # Normalize
162
  df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
163
  X = df[['beds', 'sqft', 'property_type', 'price']]
164
  input_tensor = torch.tensor(X.values, dtype=torch.float32)
165
- return input_tensor
 
1
  import torch
2
  import sys
3
  import pandas as pd
 
4
  from typing import TypedDict, Optional, Tuple
5
  import datetime
6
  import math
7
  import importlib.util
8
  from huggingface_hub import hf_hub_download
9
  import pickle
 
10
 
11
 
12
  """
 
149
  default_beds = 3
150
  default_sqft = 1500.0
151
  default_property_type = '6'
 
 
152
  df['beds'] = df['beds'].fillna(default_beds).infer_objects(copy=False).astype(int)
153
  df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
154
+ df['property_type'] = df['property_type'].fillna(default_property_type)
155
  df['property_type'] = df['property_type'].astype(int)
 
 
156
  df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
157
  X = df[['beds', 'sqft', 'property_type', 'price']]
158
  input_tensor = torch.tensor(X.values, dtype=torch.float32)
159
+ return input_tensor