Update MLBaseModelDriver.py
Browse files- MLBaseModelDriver.py +2 -8
MLBaseModelDriver.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
import torch
|
2 |
import sys
|
3 |
import pandas as pd
|
4 |
-
pd.set_option('future.no_silent_downcasting', True)
|
5 |
from typing import TypedDict, Optional, Tuple
|
6 |
import datetime
|
7 |
import math
|
8 |
import importlib.util
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import pickle
|
11 |
-
import time
|
12 |
|
13 |
|
14 |
"""
|
@@ -151,15 +149,11 @@ class MLBaseModelDriver:
|
|
151 |
default_beds = 3
|
152 |
default_sqft = 1500.0
|
153 |
default_property_type = '6'
|
154 |
-
|
155 |
-
# Fill and type inference
|
156 |
df['beds'] = df['beds'].fillna(default_beds).infer_objects(copy=False).astype(int)
|
157 |
df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
|
158 |
-
df['property_type'] = df['property_type'].fillna(default_property_type)
|
159 |
df['property_type'] = df['property_type'].astype(int)
|
160 |
-
|
161 |
-
# Normalize
|
162 |
df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
|
163 |
X = df[['beds', 'sqft', 'property_type', 'price']]
|
164 |
input_tensor = torch.tensor(X.values, dtype=torch.float32)
|
165 |
-
return input_tensor
|
|
|
1 |
import torch
|
2 |
import sys
|
3 |
import pandas as pd
|
|
|
4 |
from typing import TypedDict, Optional, Tuple
|
5 |
import datetime
|
6 |
import math
|
7 |
import importlib.util
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
import pickle
|
|
|
10 |
|
11 |
|
12 |
"""
|
|
|
149 |
default_beds = 3
|
150 |
default_sqft = 1500.0
|
151 |
default_property_type = '6'
|
|
|
|
|
152 |
df['beds'] = df['beds'].fillna(default_beds).infer_objects(copy=False).astype(int)
|
153 |
df['sqft'] = pd.to_numeric(df['sqft'], errors='coerce').fillna(default_sqft)
|
154 |
+
df['property_type'] = df['property_type'].fillna(default_property_type)
|
155 |
df['property_type'] = df['property_type'].astype(int)
|
|
|
|
|
156 |
df[['sqft', 'price']] = self.scaler.transform(df[['sqft', 'price']])
|
157 |
X = df[['beds', 'sqft', 'property_type', 'price']]
|
158 |
input_tensor = torch.tensor(X.values, dtype=torch.float32)
|
159 |
+
return input_tensor
|