File size: 8,070 Bytes
7771996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions import laplace
from torch.distributions import uniform
from torch.nn.modules.loss import _Loss
from contextlib import contextmanager
def replicate_input(x):
"""
Clone the input tensor x.
"""
return x.detach().clone()
def replicate_input_withgrad(x):
"""
Clone the input tensor x and set requires_grad=True.
"""
return x.detach().clone().requires_grad_()
def calc_l2distsq(x, y):
"""
Calculate L2 distance between tensors x and y.
"""
d = (x - y)**2
return d.view(d.shape[0], -1).sum(dim=1)
def clamp(input, min=None, max=None):
"""
Clamp a tensor by its minimun and maximun values.
"""
ndim = input.ndimension()
if min is None:
pass
elif isinstance(min, (float, int)):
input = torch.clamp(input, min=min)
elif isinstance(min, torch.Tensor):
if min.ndimension() == ndim - 1 and min.shape == input.shape[1:]:
input = torch.max(input, min.view(1, *min.shape))
else:
assert min.shape == input.shape
input = torch.max(input, min)
else:
raise ValueError("min can only be None | float | torch.Tensor")
if max is None:
pass
elif isinstance(max, (float, int)):
input = torch.clamp(input, max=max)
elif isinstance(max, torch.Tensor):
if max.ndimension() == ndim - 1 and max.shape == input.shape[1:]:
input = torch.min(input, max.view(1, *max.shape))
else:
assert max.shape == input.shape
input = torch.min(input, max)
else:
raise ValueError("max can only be None | float | torch.Tensor")
return input
def _batch_multiply_tensor_by_vector(vector, batch_tensor):
"""Equivalent to the following.
for ii in range(len(vector)):
batch_tensor.data[ii] *= vector[ii]
return batch_tensor
"""
return (
batch_tensor.transpose(0, -1) * vector).transpose(0, -1).contiguous()
def _batch_clamp_tensor_by_vector(vector, batch_tensor):
"""Equivalent to the following.
for ii in range(len(vector)):
batch_tensor[ii] = clamp(
batch_tensor[ii], -vector[ii], vector[ii])
"""
return torch.min(
torch.max(batch_tensor.transpose(0, -1), -vector), vector
).transpose(0, -1).contiguous()
def batch_multiply(float_or_vector, tensor):
"""
Multpliy a batch of tensors with a float or vector.
"""
if isinstance(float_or_vector, torch.Tensor):
assert len(float_or_vector) == len(tensor)
tensor = _batch_multiply_tensor_by_vector(float_or_vector, tensor)
elif isinstance(float_or_vector, float):
tensor *= float_or_vector
else:
raise TypeError("Value has to be float or torch.Tensor")
return tensor
def batch_clamp(float_or_vector, tensor):
"""
Clamp a batch of tensors.
"""
if isinstance(float_or_vector, torch.Tensor):
assert len(float_or_vector) == len(tensor)
tensor = _batch_clamp_tensor_by_vector(float_or_vector, tensor)
return tensor
elif isinstance(float_or_vector, float):
tensor = clamp(tensor, -float_or_vector, float_or_vector)
else:
raise TypeError("Value has to be float or torch.Tensor")
return tensor
def _get_norm_batch(x, p):
"""
Returns the Lp norm of batch x.
"""
batch_size = x.size(0)
return x.abs().pow(p).view(batch_size, -1).sum(dim=1).pow(1. / p)
def _thresh_by_magnitude(theta, x):
"""
Threshold by magnitude.
"""
return torch.relu(torch.abs(x) - theta) * x.sign()
def clamp_by_pnorm(x, p, r):
"""
Clamp tensor by its norm.
"""
assert isinstance(p, float) or isinstance(p, int)
norm = _get_norm_batch(x, p)
if isinstance(r, torch.Tensor):
assert norm.size() == r.size()
else:
assert isinstance(r, float)
factor = torch.min(r / norm, torch.ones_like(norm))
return batch_multiply(factor, x)
def is_float_or_torch_tensor(x):
"""
Return whether input x is a float or a torch.Tensor.
"""
return isinstance(x, torch.Tensor) or isinstance(x, float)
def normalize_by_pnorm(x, p=2, small_constant=1e-6):
"""
Normalize gradients for gradient (not gradient sign) attacks.
Arguments:
x (torch.Tensor): tensor containing the gradients on the input.
p (int): (optional) order of the norm for the normalization (1 or 2).
small_constant (float): (optional) to avoid dividing by zero.
Returns:
normalized gradients.
"""
assert isinstance(p, float) or isinstance(p, int)
norm = _get_norm_batch(x, p)
norm = torch.max(norm, torch.ones_like(norm) * small_constant)
return batch_multiply(1. / norm, x)
def rand_init_delta(delta, x, ord, eps, clip_min, clip_max):
"""
Randomly initialize the perturbation.
"""
if isinstance(eps, torch.Tensor):
assert len(eps) == len(delta)
if ord == np.inf:
delta.data.uniform_(-1, 1)
delta.data = batch_multiply(eps, delta.data)
elif ord == 2:
delta.data.uniform_(clip_min, clip_max)
delta.data = delta.data - x
delta.data = clamp_by_pnorm(delta.data, ord, eps)
elif ord == 1:
ini = laplace.Laplace(
loc=delta.new_tensor(0), scale=delta.new_tensor(1))
delta.data = ini.sample(delta.data.shape)
delta.data = normalize_by_pnorm(delta.data, p=1)
ray = uniform.Uniform(0, eps).sample()
delta.data *= ray
delta.data = clamp(x.data + delta.data, clip_min, clip_max) - x.data
else:
error = "Only ord = inf, ord = 1 and ord = 2 have been implemented"
raise NotImplementedError(error)
delta.data = clamp(
x + delta.data, min=clip_min, max=clip_max) - x
return delta.data
def CWLoss(output, target, confidence=0):
"""
CW loss (Marging loss).
"""
num_classes = output.shape[-1]
target = target.data
target_onehot = torch.zeros(target.size() + (num_classes,))
target_onehot = target_onehot.cuda()
target_onehot.scatter_(1, target.unsqueeze(1), 1.)
target_var = Variable(target_onehot, requires_grad=False)
real = (target_var * output).sum(1)
other = ((1. - target_var) * output - target_var * 10000.).max(1)[0]
loss = - torch.clamp(real - other + confidence, min=0.)
loss = torch.sum(loss)
return loss
class ctx_noparamgrad(object):
def __init__(self, module):
self.prev_grad_state = get_param_grad_state(module)
self.module = module
set_param_grad_off(module)
def __enter__(self):
pass
def __exit__(self, *args):
set_param_grad_state(self.module, self.prev_grad_state)
return False
class ctx_eval(object):
def __init__(self, module):
self.prev_training_state = get_module_training_state(module)
self.module = module
set_module_training_off(module)
def __enter__(self):
pass
def __exit__(self, *args):
set_module_training_state(self.module, self.prev_training_state)
return False
@contextmanager
def ctx_noparamgrad_and_eval(module):
with ctx_noparamgrad(module) as a, ctx_eval(module) as b:
yield (a, b)
def get_module_training_state(module):
return {mod: mod.training for mod in module.modules()}
def set_module_training_state(module, training_state):
for mod in module.modules():
mod.training = training_state[mod]
def set_module_training_off(module):
for mod in module.modules():
mod.training = False
def get_param_grad_state(module):
return {param: param.requires_grad for param in module.parameters()}
def set_param_grad_state(module, grad_state):
for param in module.parameters():
param.requires_grad = grad_state[param]
def set_param_grad_off(module):
for param in module.parameters():
param.requires_grad = False |