Upload folder using huggingface_hub
Browse files- utils/__init__.py +7 -0
- utils/criterion.py +40 -0
- utils/distributed.py +55 -0
- utils/init.py +77 -0
- utils/lr_scheduler.py +38 -0
- utils/metric.py +58 -0
- utils/misc.py +122 -0
- utils/profile.py +40 -0
utils/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .criterion import *
|
2 |
+
from .distributed import *
|
3 |
+
from .init import *
|
4 |
+
from .lr_scheduler import *
|
5 |
+
from .metric import *
|
6 |
+
from .misc import *
|
7 |
+
from .profile import *
|
utils/criterion.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
__all__ = ["label_smooth", "CrossEntropyWithSoftTarget", "CrossEntropyWithLabelSmooth"]
|
5 |
+
|
6 |
+
|
7 |
+
def label_smooth(
|
8 |
+
target: torch.Tensor, n_classes: int, smooth_factor=0.1
|
9 |
+
) -> torch.Tensor:
|
10 |
+
# convert to one-hot
|
11 |
+
batch_size = target.shape[0]
|
12 |
+
target = torch.unsqueeze(target, 1)
|
13 |
+
soft_target = torch.zeros((batch_size, n_classes), device=target.device)
|
14 |
+
soft_target.scatter_(1, target, 1)
|
15 |
+
# label smoothing
|
16 |
+
soft_target = torch.add(
|
17 |
+
soft_target * (1 - smooth_factor), smooth_factor / n_classes
|
18 |
+
)
|
19 |
+
return soft_target
|
20 |
+
|
21 |
+
|
22 |
+
class CrossEntropyWithSoftTarget:
|
23 |
+
@staticmethod
|
24 |
+
def get_loss(pred: torch.Tensor, soft_target: torch.Tensor) -> torch.Tensor:
|
25 |
+
return torch.mean(
|
26 |
+
torch.sum(-soft_target * F.log_softmax(pred, dim=-1, _stacklevel=5), 1)
|
27 |
+
)
|
28 |
+
|
29 |
+
def __call__(self, pred: torch.Tensor, soft_target: torch.Tensor) -> torch.Tensor:
|
30 |
+
return self.get_loss(pred, soft_target)
|
31 |
+
|
32 |
+
|
33 |
+
class CrossEntropyWithLabelSmooth:
|
34 |
+
def __init__(self, smooth_ratio=0.1):
|
35 |
+
super(CrossEntropyWithLabelSmooth, self).__init__()
|
36 |
+
self.smooth_ratio = smooth_ratio
|
37 |
+
|
38 |
+
def __call__(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
39 |
+
soft_target = label_smooth(target, pred.shape[1], self.smooth_ratio)
|
40 |
+
return CrossEntropyWithSoftTarget.get_loss(pred, soft_target)
|
utils/distributed.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed
|
5 |
+
from torchpack import distributed
|
6 |
+
|
7 |
+
from utils.misc import list_mean, list_sum
|
8 |
+
|
9 |
+
__all__ = ["ddp_reduce_tensor", "DistributedMetric"]
|
10 |
+
|
11 |
+
|
12 |
+
def ddp_reduce_tensor(
|
13 |
+
tensor: torch.Tensor, reduce="mean"
|
14 |
+
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
15 |
+
tensor_list = [torch.empty_like(tensor) for _ in range(distributed.size())]
|
16 |
+
torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False)
|
17 |
+
if reduce == "mean":
|
18 |
+
return list_mean(tensor_list)
|
19 |
+
elif reduce == "sum":
|
20 |
+
return list_sum(tensor_list)
|
21 |
+
elif reduce == "cat":
|
22 |
+
return torch.cat(tensor_list, dim=0)
|
23 |
+
elif reduce == "root":
|
24 |
+
return tensor_list[0]
|
25 |
+
else:
|
26 |
+
return tensor_list
|
27 |
+
|
28 |
+
|
29 |
+
class DistributedMetric(object):
|
30 |
+
"""Average metrics for distributed training."""
|
31 |
+
|
32 |
+
def __init__(self, name: Optional[str] = None, backend="ddp"):
|
33 |
+
self.name = name
|
34 |
+
self.sum = 0
|
35 |
+
self.count = 0
|
36 |
+
self.backend = backend
|
37 |
+
|
38 |
+
def update(self, val: Union[torch.Tensor, int, float], delta_n=1):
|
39 |
+
val *= delta_n
|
40 |
+
if type(val) in [int, float]:
|
41 |
+
val = torch.Tensor(1).fill_(val).cuda()
|
42 |
+
if self.backend == "ddp":
|
43 |
+
self.count += ddp_reduce_tensor(
|
44 |
+
torch.Tensor(1).fill_(delta_n).cuda(), reduce="sum"
|
45 |
+
)
|
46 |
+
self.sum += ddp_reduce_tensor(val.detach(), reduce="sum")
|
47 |
+
else:
|
48 |
+
raise NotImplementedError
|
49 |
+
|
50 |
+
@property
|
51 |
+
def avg(self):
|
52 |
+
if self.count == 0:
|
53 |
+
return torch.Tensor(1).fill_(-1)
|
54 |
+
else:
|
55 |
+
return self.sum / self.count
|
utils/init.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Dict, List, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
__all__ = ["init_modules", "load_state_dict"]
|
9 |
+
|
10 |
+
|
11 |
+
def init_modules(
|
12 |
+
module: Union[nn.Module, List[nn.Module]], init_type="he_fout"
|
13 |
+
) -> None:
|
14 |
+
init_params = init_type.split("@")
|
15 |
+
if len(init_params) > 1:
|
16 |
+
init_params = float(init_params[1])
|
17 |
+
else:
|
18 |
+
init_params = None
|
19 |
+
|
20 |
+
if isinstance(module, list):
|
21 |
+
for sub_module in module:
|
22 |
+
init_modules(sub_module)
|
23 |
+
else:
|
24 |
+
for m in module.modules():
|
25 |
+
if isinstance(m, nn.Conv2d):
|
26 |
+
if init_type == "he_fout":
|
27 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
28 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
29 |
+
elif init_type.startswith("kaiming_uniform"):
|
30 |
+
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(init_params or 5))
|
31 |
+
else:
|
32 |
+
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(init_params or 5))
|
33 |
+
if m.bias is not None:
|
34 |
+
m.bias.data.zero_()
|
35 |
+
elif isinstance(m, _BatchNorm):
|
36 |
+
m.weight.data.fill_(1)
|
37 |
+
m.bias.data.zero_()
|
38 |
+
elif isinstance(m, nn.Linear):
|
39 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
40 |
+
if m.bias is not None:
|
41 |
+
m.bias.data.zero_()
|
42 |
+
else:
|
43 |
+
weight = getattr(m, "weight", None)
|
44 |
+
bias = getattr(m, "bias", None)
|
45 |
+
if isinstance(weight, torch.nn.Parameter):
|
46 |
+
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(init_params or 5))
|
47 |
+
if isinstance(bias, torch.nn.Parameter):
|
48 |
+
bias.data.zero_()
|
49 |
+
|
50 |
+
|
51 |
+
def load_state_dict(
|
52 |
+
model: nn.Module, state_dict: Dict[str, torch.Tensor], strict=True
|
53 |
+
) -> None:
|
54 |
+
current_state_dict = model.state_dict()
|
55 |
+
for key in state_dict:
|
56 |
+
if current_state_dict[key].shape != state_dict[key].shape:
|
57 |
+
if strict:
|
58 |
+
raise ValueError(
|
59 |
+
"%s shape mismatch (src=%s, target=%s)"
|
60 |
+
% (
|
61 |
+
key,
|
62 |
+
list(state_dict[key].shape),
|
63 |
+
list(current_state_dict[key].shape),
|
64 |
+
)
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
print(
|
68 |
+
"Skip loading %s due to shape mismatch (src=%s, target=%s)"
|
69 |
+
% (
|
70 |
+
key,
|
71 |
+
list(state_dict[key].shape),
|
72 |
+
list(current_state_dict[key].shape),
|
73 |
+
)
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
current_state_dict[key].copy_(state_dict[key])
|
77 |
+
model.load_state_dict(current_state_dict)
|
utils/lr_scheduler.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.optim import Optimizer
|
6 |
+
|
7 |
+
__all__ = ["CosineLRwithWarmup"]
|
8 |
+
|
9 |
+
|
10 |
+
class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
optimizer: Optimizer,
|
14 |
+
warmup_steps: int,
|
15 |
+
warmup_lr: float,
|
16 |
+
decay_steps: int,
|
17 |
+
last_epoch: int = -1,
|
18 |
+
) -> None:
|
19 |
+
self.warmup_steps = warmup_steps
|
20 |
+
self.warmup_lr = warmup_lr
|
21 |
+
self.decay_steps = decay_steps
|
22 |
+
super().__init__(optimizer, last_epoch)
|
23 |
+
|
24 |
+
def get_lr(self) -> List[float]:
|
25 |
+
if self.last_epoch < self.warmup_steps:
|
26 |
+
return [
|
27 |
+
(base_lr - self.warmup_lr) * self.last_epoch / self.warmup_steps
|
28 |
+
+ self.warmup_lr
|
29 |
+
for base_lr in self.base_lrs
|
30 |
+
]
|
31 |
+
else:
|
32 |
+
current_steps = self.last_epoch - self.warmup_steps
|
33 |
+
return [
|
34 |
+
0.5
|
35 |
+
* base_lr
|
36 |
+
* (1 + math.cos(math.pi * current_steps / self.decay_steps))
|
37 |
+
for base_lr in self.base_lrs
|
38 |
+
]
|
utils/metric.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchvision
|
8 |
+
from torch.autograd import Variable
|
9 |
+
import torch.optim as optim
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
__all__ = ["accuracy", "AverageMeter"]
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def accuracy(
|
19 |
+
output: torch.Tensor, target: torch.Tensor, topk=(1,)
|
20 |
+
) -> List[torch.Tensor]:
|
21 |
+
"""Computes the precision@k for the specified values of k."""
|
22 |
+
maxk = max(topk)
|
23 |
+
batch_size = target.shape[0]
|
24 |
+
|
25 |
+
_, pred = output.topk(maxk, 1, True, True)
|
26 |
+
pred = pred.t()
|
27 |
+
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
|
28 |
+
|
29 |
+
res = []
|
30 |
+
for k in topk:
|
31 |
+
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
|
32 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
33 |
+
return res
|
34 |
+
|
35 |
+
|
36 |
+
class AverageMeter(object):
|
37 |
+
"""Computes and stores the average and current value.
|
38 |
+
|
39 |
+
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self):
|
43 |
+
self.val = 0
|
44 |
+
self.avg = 0
|
45 |
+
self.sum = 0
|
46 |
+
self.count = 0
|
47 |
+
|
48 |
+
def reset(self):
|
49 |
+
self.val = 0
|
50 |
+
self.avg = 0
|
51 |
+
self.sum = 0
|
52 |
+
self.count = 0
|
53 |
+
|
54 |
+
def update(self, val: Union[torch.Tensor, np.ndarray, float, int], n=1):
|
55 |
+
self.val = val
|
56 |
+
self.sum += val * n
|
57 |
+
self.count += n
|
58 |
+
self.avg = self.sum / self.count
|
utils/misc.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import yaml
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"make_divisible",
|
10 |
+
"load_state_dict_from_file",
|
11 |
+
"list_mean",
|
12 |
+
"list_sum",
|
13 |
+
"parse_unknown_args",
|
14 |
+
"partial_update_config",
|
15 |
+
"remove_bn",
|
16 |
+
"get_same_padding",
|
17 |
+
"torch_random_choices",
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
def make_divisible(
|
22 |
+
v: Union[int, float], divisor: Optional[int], min_val=None
|
23 |
+
) -> Union[int, float]:
|
24 |
+
"""This function is taken from the original tf repo.
|
25 |
+
|
26 |
+
It ensures that all layers have a channel number that is divisible by 8
|
27 |
+
It can be seen here:
|
28 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
29 |
+
:param v:
|
30 |
+
:param divisor:
|
31 |
+
:param min_val:
|
32 |
+
:return:
|
33 |
+
"""
|
34 |
+
if divisor is None:
|
35 |
+
return v
|
36 |
+
|
37 |
+
if min_val is None:
|
38 |
+
min_val = divisor
|
39 |
+
new_v = max(min_val, int(v + divisor / 2) // divisor * divisor)
|
40 |
+
# Make sure that round down does not go down by more than 10%.
|
41 |
+
if new_v < 0.9 * v:
|
42 |
+
new_v += divisor
|
43 |
+
return new_v
|
44 |
+
|
45 |
+
|
46 |
+
def load_state_dict_from_file(file: str) -> Dict[str, torch.Tensor]:
|
47 |
+
checkpoint = torch.load(file, map_location="cpu")
|
48 |
+
if "state_dict" in checkpoint:
|
49 |
+
checkpoint = checkpoint["state_dict"]
|
50 |
+
return checkpoint
|
51 |
+
|
52 |
+
|
53 |
+
def list_sum(x: List) -> Any:
|
54 |
+
return x[0] if len(x) == 1 else x[0] + list_sum(x[1:])
|
55 |
+
|
56 |
+
|
57 |
+
def list_mean(x: List) -> Any:
|
58 |
+
return list_sum(x) / len(x)
|
59 |
+
|
60 |
+
|
61 |
+
def parse_unknown_args(unknown: List) -> Dict:
|
62 |
+
"""Parse unknown args."""
|
63 |
+
index = 0
|
64 |
+
parsed_dict = {}
|
65 |
+
while index < len(unknown):
|
66 |
+
key, val = unknown[index], unknown[index + 1]
|
67 |
+
index += 2
|
68 |
+
if key.startswith("--"):
|
69 |
+
key = key[2:]
|
70 |
+
try:
|
71 |
+
# try parsing with yaml
|
72 |
+
if "{" in val and "}" in val and ":" in val:
|
73 |
+
val = val.replace(":", ": ") # add space manually for dict
|
74 |
+
out_val = yaml.safe_load(val)
|
75 |
+
except ValueError:
|
76 |
+
# return raw string if parsing fails
|
77 |
+
out_val = val
|
78 |
+
parsed_dict[key] = out_val
|
79 |
+
return parsed_dict
|
80 |
+
|
81 |
+
|
82 |
+
def partial_update_config(config: Dict, partial_config: Dict):
|
83 |
+
for key in partial_config:
|
84 |
+
if (
|
85 |
+
key in config
|
86 |
+
and isinstance(partial_config[key], Dict)
|
87 |
+
and isinstance(config[key], Dict)
|
88 |
+
):
|
89 |
+
partial_update_config(config[key], partial_config[key])
|
90 |
+
else:
|
91 |
+
config[key] = partial_config[key]
|
92 |
+
|
93 |
+
|
94 |
+
def remove_bn(model: nn.Module) -> None:
|
95 |
+
for m in model.modules():
|
96 |
+
if isinstance(m, _BatchNorm):
|
97 |
+
m.weight = m.bias = None
|
98 |
+
m.forward = lambda x: x
|
99 |
+
|
100 |
+
|
101 |
+
def get_same_padding(kernel_size: Union[int, Tuple[int, int]]) -> Union[int, tuple]:
|
102 |
+
if isinstance(kernel_size, tuple):
|
103 |
+
assert len(kernel_size) == 2, f"invalid kernel size: {kernel_size}"
|
104 |
+
p1 = get_same_padding(kernel_size[0])
|
105 |
+
p2 = get_same_padding(kernel_size[1])
|
106 |
+
return p1, p2
|
107 |
+
else:
|
108 |
+
assert isinstance(
|
109 |
+
kernel_size, int
|
110 |
+
), "kernel size should be either `int` or `tuple`"
|
111 |
+
assert kernel_size % 2 > 0, "kernel size should be odd number"
|
112 |
+
return kernel_size // 2
|
113 |
+
|
114 |
+
|
115 |
+
def torch_random_choices(
|
116 |
+
src_list: List[Any],
|
117 |
+
generator: Optional[torch.Generator],
|
118 |
+
k=1,
|
119 |
+
) -> Union[Any, List[Any]]:
|
120 |
+
rand_idx = torch.randint(low=0, high=len(src_list), generator=generator, size=(k,))
|
121 |
+
out_list = [src_list[i] for i in rand_idx]
|
122 |
+
return out_list[0] if k == 1 else out_list
|
utils/profile.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torchprofile import profile_macs
|
6 |
+
|
7 |
+
__all__ = ["is_parallel", "get_module_device", "trainable_param_num", "inference_macs"]
|
8 |
+
|
9 |
+
|
10 |
+
def is_parallel(model: nn.Module) -> bool:
|
11 |
+
return isinstance(
|
12 |
+
model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def get_module_device(module: nn.Module) -> torch.device:
|
17 |
+
return module.parameters().__next__().device
|
18 |
+
|
19 |
+
|
20 |
+
def trainable_param_num(network: nn.Module, unit=1e6) -> float:
|
21 |
+
return sum(p.numel() for p in network.parameters() if p.requires_grad) / unit
|
22 |
+
|
23 |
+
|
24 |
+
def inference_macs(
|
25 |
+
network: nn.Module,
|
26 |
+
args: Tuple = (),
|
27 |
+
data_shape: Optional[Tuple] = None,
|
28 |
+
unit: float = 1e6,
|
29 |
+
) -> float:
|
30 |
+
if is_parallel(network):
|
31 |
+
network = network.module
|
32 |
+
if data_shape is not None:
|
33 |
+
if len(args) > 0:
|
34 |
+
raise ValueError("Please provide either data_shape or args tuple.")
|
35 |
+
args = (torch.zeros(data_shape, device=get_module_device(network)),)
|
36 |
+
is_training = network.training
|
37 |
+
network.eval()
|
38 |
+
macs = profile_macs(network, args=args) / unit
|
39 |
+
network.train(is_training)
|
40 |
+
return macs
|