import torch import torch.nn as nn import torch.nn.functional as F from autoattack import AutoAttack import numpy as np import logging from .base import Attack,LabelMixin import torch import torch.nn as nn from typing import Dict from .utils import ctx_noparamgrad_and_eval from utils.distributed import DistributedMetric from tqdm import tqdm from torchpack import distributed as dist from utils import accuracy class AutoAttacks(Attack, LabelMixin): def __init__( self, predict, loss_fn=None, eps=0.3, nb_iter=40, eps_iter=0.01, rand_init=True, clip_min=0., clip_max=1., ord=np.inf, targeted=False, rand_init_type='uniform'): super(AutoAttacks, self).__init__(predict, loss_fn, clip_min, clip_max) self.eps = eps self.nb_iter = nb_iter self.eps_iter = eps_iter self.rand_init = rand_init self.rand_init_type = rand_init_type self.ord = ord self.targeted = targeted if self.loss_fn is None: self.loss_fn = nn.CrossEntropyLoss(reduction="sum") self.adversary = AutoAttack(predict, norm='Linf', eps=self.eps, version='standard') def perturb(self, x, y=None): adversarial_examples = self.adversary.run_standard_evaluation(x, y, bs=100) return adversarial_examples,adversarial_examples def eval_AutoAttack(self,data_loader_dict: Dict)-> Dict: test_criterion = nn.CrossEntropyLoss().cuda() val_loss = DistributedMetric() val_top1 = DistributedMetric() val_top5 = DistributedMetric() val_advloss = DistributedMetric() val_advtop1 = DistributedMetric() val_advtop5 = DistributedMetric() self.predict.eval() with tqdm( total=len(data_loader_dict["val"]), desc="Eval", disable=not dist.is_master(), ) as t: for images, labels in data_loader_dict["val"]: images, labels = images.cuda(), labels.cuda() # compute output output = self.predict(images) loss = test_criterion(output, labels) val_loss.update(loss, images.shape[0]) acc1, acc5 = accuracy(output, labels, topk=(1, 5)) val_top5.update(acc5[0], images.shape[0]) val_top1.update(acc1[0], images.shape[0]) with ctx_noparamgrad_and_eval(self.predict): images_adv,_ = self.perturb(images, labels) output_adv = self.predict(images_adv) loss_adv = test_criterion(output_adv,labels) val_advloss.update(loss_adv, images.shape[0]) acc1_adv, acc5_adv = accuracy(output_adv, labels, topk=(1, 5)) val_advtop1.update(acc1_adv[0], images.shape[0]) val_advtop5.update(acc5_adv[0], images.shape[0]) t.set_postfix( { "loss": val_loss.avg.item(), "top1": val_top1.avg.item(), "top5": val_top5.avg.item(), "adv_loss": val_advloss.avg.item(), "adv_top1": val_advtop1.avg.item(), "adv_top5": val_advtop5.avg.item(), "#samples": val_top1.count.item(), "batch_size": images.shape[0], "img_size": images.shape[2], } ) t.update() val_results = { "val_top1": val_top1.avg.item(), "val_top5": val_top5.avg.item(), "val_loss": val_loss.avg.item(), "val_advtop1": val_advtop1.avg.item(), "val_advtop5": val_advtop5.avg.item(), "val_advloss": val_advloss.avg.item(), } return val_results