import os import torch import argparse from proard.classification.data_providers.imagenet import ImagenetDataProvider from proard.classification.run_manager import DistributedClassificationRunConfig, DistributedRunManager from proard.model_zoo import DYN_net from proard.nas.accuracy_predictor import AccuracyRobustnessDataset import horovod.torch as hvd parser = argparse.ArgumentParser() parser.add_argument( "-p", "--path", help="The path of cifar10", type=str, default="/dataset/cifar10" ) parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") parser.add_argument( "-b", "--batch_size", help="The batch on every device for validation", type=int, default=32, ) parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) parser.add_argument( "-n", "--net", metavar="DYNNET", default="ResNet50", choices=[ "ResNet50", "MBV3", "ProxylessNASNet", "MBV2" ], help="Dynamic networks", ) parser.add_argument( "--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] ) parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) parser.add_argument( "--robust_mode", type=bool, default=True ) parser.add_argument( "--WPS", type=bool, default=True ) parser.add_argument( "--base", type=bool, default=False ) # Initialize Horovod hvd.init() # Pin GPU to be used to process local rank (one GPU per process) torch.cuda.set_device(hvd.local_rank()) num_gpus = hvd.size() args = parser.parse_args() if args.gpu == "all": device_list = range(torch.cuda.device_count()) args.gpu = ",".join(str(_) for _ in device_list) else: device_list = [int(_) for _ in args.gpu.split(",")] os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu args.test_batch_size = args.batch_size # * max(len(device_list), 1) ImagenetDataProvider.DEFAULT_PATH = args.path distributed_run_config = DistributedClassificationRunConfig(**args.__dict__, num_replicas=num_gpus, rank=hvd.rank()) dyn_network = DYN_net(args.net, args.robust_mode , args.dataset, args.train_criterion, pretrained=True,run_config=distributed_run_config,WPS=args.WPS) compression = hvd.Compression.none distributed_run_manager = DistributedRunManager(".tmp/eval_subnet", dyn_network, distributed_run_config,compression,is_root=(hvd.rank() == 0),init=False) distributed_run_manager.save_config() # hvd broadcast distributed_run_manager.broadcast() acc_data = AccuracyRobustnessDataset("./acc_rob_data_WPS_{}_{}_{}".format(args.dataset,args.net,args.train_criterion)) acc_data.build_acc_rob_dataset(distributed_run_manager,dyn_network,image_size_list=[224 if args.dataset == "imagenet" else 32])