# Once for All: Train One Network and Specialize it for Efficient Deployment # Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han # International Conference on Learning Representations (ICLR), 2020. import os import torch import argparse from proard.classification.data_providers.imagenet import ImagenetDataProvider from proard.classification.data_providers.cifar10 import Cifar10DataProvider from proard.classification.data_providers.cifar100 import Cifar100DataProvider from proard.classification.run_manager import ClassificationRunConfig, RunManager from proard.model_zoo import DYN_net parser = argparse.ArgumentParser() parser.add_argument( "-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet" ) parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") parser.add_argument( "-b", "--batch-size", help="The batch on every device for validation", type=int, default=16, ) parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) parser.add_argument( "-n", "--net", metavar="DYNET", default="ResNet50", choices=[ "ResNet50", "MBV3", "ProxylessNASNet", "MBV2", "WideResNet" ], help="dynamic networks", ) parser.add_argument( "--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] ) parser.add_argument( "--attack", type=str, default="autoattack" ,choices=['fgsm', 'linf-pgd', 'fgm', 'l2-pgd', 'linf-df', 'l2-df', 'linf-apgd', 'l2-apgd','squar_attack','autoattack','apgd_ce'] ) parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) parser.add_argument( "--robust_mode", type=bool, default=True ) parser.add_argument( "--WPS", type=bool, default=False ) parser.add_argument( "--base", type=bool, default=False ) args = parser.parse_args() if args.gpu == "all": device_list = range(torch.cuda.device_count()) args.gpu = ",".join(str(_) for _ in device_list) else: device_list = [int(_) for _ in args.gpu.split(",")] os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu args.batch_size = args.batch_size * max(len(device_list), 1) ImagenetDataProvider.DEFAULT_PATH = args.path run_config = ClassificationRunConfig(attack_type=args.attack,dataset= args.dataset, test_batch_size=args.batch_size, n_worker=args.workers,robust_mode=args.robust_mode) dyn_network = DYN_net(args.net,args.robust_mode,args.dataset, args.train_criterion ,pretrained=True,run_config=run_config,WPS=args.WPS,base=args.base) """ Randomly sample a sub-network, you can also manually set the sub-network using: dyn_network.set_active_subnet(ks=7, e=6, d=4) """ if not args.base: # dyn_network.set_active_subnet(ks=3, e=4, d=2) dyn_network.set_active_subnet(d=2,e=0.35,w=1.0) # dyn_network.sample_active_subnet() # dyn_network.set_max_net() subnet = dyn_network.get_active_subnet(preserve_weight=True) # print(subnet) else: subnet = dyn_network """ Test sampled subnet """ run_manager = RunManager(".tmp/eval_subnet", subnet, run_config, init=False) run_config.data_provider.assign_active_img_size(32) run_manager.reset_running_statistics(net=subnet) print("Test random subnet:") # print(subnet.module_str) loss, (top1, top5,robust1,robust5) = run_manager.validate(net=subnet,is_test=True) print("Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f,\t robust1=%.1f,\t robust5=%.1f" % (loss, top1, top5,robust1,robust5))