import math from typing import List import torch from torch.optim import Optimizer __all__ = ["CosineLRwithWarmup"] class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: Optimizer, warmup_steps: int, warmup_lr: float, decay_steps: int, last_epoch: int = -1, ) -> None: self.warmup_steps = warmup_steps self.warmup_lr = warmup_lr self.decay_steps = decay_steps super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: if self.last_epoch < self.warmup_steps: return [ (base_lr - self.warmup_lr) * self.last_epoch / self.warmup_steps + self.warmup_lr for base_lr in self.base_lrs ] else: current_steps = self.last_epoch - self.warmup_steps return [ 0.5 * base_lr * (1 + math.cos(math.pi * current_steps / self.decay_steps)) for base_lr in self.base_lrs ]