smohammadi commited on
Commit
83a450b
·
verified ·
1 Parent(s): c76182e

End of training

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: llama3.2
4
+ base_model: meta-llama/Llama-3.2-3B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - yahma/alpaca-cleaned
10
+ model-index:
11
+ - name: qat-nvfp4-llama3B
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.13.0.dev0`
22
+ ```yaml
23
+ base_model: meta-llama/Llama-3.2-3B
24
+ hub_model_id: smohammadi/qat-nvfp4-llama3B
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: false
28
+ strict: false
29
+
30
+ #chunked_cross_entropy: true
31
+ #plugins:
32
+ # - axolotl.integrations.liger.LigerPlugin
33
+
34
+ liger_rope: true
35
+ liger_rms_norm: true
36
+ liger_glu_activation: true
37
+ liger_layer_norm: true
38
+ #liger_fused_linear_cross_entropy: true
39
+
40
+ datasets:
41
+ - path: yahma/alpaca-cleaned
42
+ type: alpaca
43
+ split: train[:95%]
44
+
45
+ output_dir: ./outputs/qat_out/
46
+ dataset_prepared_path: ./outputs/qat_out/dataset_prepared
47
+
48
+ sample_packing: false #true
49
+ sequence_len: 4096
50
+ flash_attention: true
51
+ #flex_attention: true
52
+ #flex_attn_compile_kwargs:
53
+ # dynamic: false
54
+ #mode: max-autotune-no-cudagraphs
55
+ qat:
56
+ activation_dtype: nvfp4
57
+ weight_dtype: nvfp4
58
+ group_size: 16 # only group_size of 16 is supported with nvfp4
59
+
60
+ wandb_project: qat_v2
61
+ wandb_entity:
62
+ wandb_watch:
63
+ wandb_name: nvfp4
64
+ wandb_log_model:
65
+
66
+ gradient_accumulation_steps: 1
67
+ micro_batch_size: 64
68
+ num_epochs: 1
69
+ optimizer: adamw_torch_fused
70
+ gradient_checkpointing: true
71
+
72
+ cosine_constant_lr_ratio: 0
73
+ cosine_min_lr_ratio: 1.0
74
+ learning_rate: 2e-5
75
+ save_only_model: true
76
+ bf16: true
77
+
78
+ resume_from_checkpoint:
79
+ logging_steps: 1
80
+
81
+ evals_per_epoch: 1
82
+ saves_per_epoch: 1
83
+
84
+ warmup_ratio: 0.1
85
+ weight_decay: 0.0
86
+
87
+ special_tokens:
88
+ pad_token: <|finetune_right_pad_id|>
89
+
90
+ # save_first_step: true # uncomment this to validate checkpoint saving works with your config
91
+
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # qat-nvfp4-llama3B
97
+
98
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the yahma/alpaca-cleaned dataset.
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 2e-05
118
+ - train_batch_size: 64
119
+ - eval_batch_size: 64
120
+ - seed: 42
121
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
122
+ - lr_scheduler_type: cosine
123
+ - lr_scheduler_warmup_steps: 76
124
+ - training_steps: 769
125
+
126
+ ### Training results
127
+
128
+
129
+
130
+ ### Framework versions
131
+
132
+ - Transformers 4.55.4
133
+ - Pytorch 2.8.0+cu128
134
+ - Datasets 4.0.0
135
+ - Tokenizers 0.21.4