Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- wikitext
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
[pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) quantized to 4-bit using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ).
|
| 8 |
+
|
| 9 |
+
To use, first install AutoGPTQ:
|
| 10 |
+
|
| 11 |
+
```shell
|
| 12 |
+
pip install auto-gptq
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
Then load the model from the hub:
|
| 16 |
+
```python
|
| 17 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 18 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 19 |
+
|
| 20 |
+
model_name = "smpanaro/pythia-410m-AutoGPTQ-4bit-128g"
|
| 21 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name)
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|Model|4-Bit Perplexity|16-Bit Perplexity|Delta|
|
| 26 |
+
|--|--|--|--|
|
| 27 |
+
|[smpanaro/pythia-160m-AutoGPTQ-4bit-128g](https://huggingface.co/smpanaro/pythia-160m-AutoGPTQ-4bit-128g)|33.4375|23.3024|10.1351|
|
| 28 |
+
|smpanaro/pythia-410m-AutoGPTQ-4bit-128g|21.4688|13.9838|7.485|
|
| 29 |
+
|
| 30 |
+
<sub>Wikitext perplexity measured as in the [huggingface docs](https://huggingface.co/docs/transformers/en/perplexity), lower is better</sub>
|