repro code
Browse files- activation_stats.py +398 -0
- finetune_qwen.py +1267 -0
- layer_influence.py +375 -0
- layer_surgery.py +279 -0
- moe_to_dense.py +1097 -0
- sample.txt +65 -0
- scales.json +8 -0
- visualize_activations.py +467 -0
activation_stats.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# fmt: off
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
import json
|
6 |
+
import math
|
7 |
+
from dataclasses import dataclass, asdict
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Any, Dict, List, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class RunningStat:
|
17 |
+
count: int = 0
|
18 |
+
sum: float = 0.0
|
19 |
+
sumsq: float = 0.0
|
20 |
+
min: Optional[float] = None
|
21 |
+
max: Optional[float] = None
|
22 |
+
zero_count: int = 0
|
23 |
+
nan_count: int = 0
|
24 |
+
inf_count: int = 0
|
25 |
+
|
26 |
+
def update_from_tensor(self, t: torch.Tensor):
|
27 |
+
with torch.no_grad():
|
28 |
+
nan_mask = torch.isnan(t)
|
29 |
+
inf_mask = torch.isinf(t)
|
30 |
+
self.nan_count += int(nan_mask.sum().item())
|
31 |
+
self.inf_count += int(inf_mask.sum().item())
|
32 |
+
t = torch.nan_to_num(t, nan=0.0, posinf=0.0, neginf=0.0)
|
33 |
+
|
34 |
+
self.zero_count += int((t == 0).sum().item())
|
35 |
+
|
36 |
+
tf = t.float()
|
37 |
+
self.sum += float(tf.sum().item())
|
38 |
+
self.sumsq += float((tf * tf).sum().item())
|
39 |
+
self.count += t.numel()
|
40 |
+
|
41 |
+
t_min = float(t.min().item())
|
42 |
+
t_max = float(t.max().item())
|
43 |
+
if self.min is None or t_min < self.min:
|
44 |
+
self.min = t_min
|
45 |
+
if self.max is None or t_max > self.max:
|
46 |
+
self.max = t_max
|
47 |
+
|
48 |
+
@property
|
49 |
+
def mean(self) -> Optional[float]:
|
50 |
+
if self.count == 0:
|
51 |
+
return None
|
52 |
+
return self.sum / self.count
|
53 |
+
|
54 |
+
@property
|
55 |
+
def var(self) -> Optional[float]:
|
56 |
+
if self.count == 0:
|
57 |
+
return None
|
58 |
+
m = self.mean
|
59 |
+
return max(0.0, self.sumsq / self.count - (m * m))
|
60 |
+
|
61 |
+
@property
|
62 |
+
def std(self) -> Optional[float]:
|
63 |
+
v = self.var
|
64 |
+
if v is None:
|
65 |
+
return None
|
66 |
+
return math.sqrt(v)
|
67 |
+
|
68 |
+
def to_dict(self) -> Dict[str, Any]:
|
69 |
+
d = asdict(self)
|
70 |
+
d["mean"] = self.mean
|
71 |
+
d["std"] = self.std
|
72 |
+
return d
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class TokenRMSStat:
|
77 |
+
count: int = 0
|
78 |
+
sum: float = 0.0
|
79 |
+
sumsq: float = 0.0
|
80 |
+
|
81 |
+
def update_from_tensor(self, t: torch.Tensor):
|
82 |
+
with torch.no_grad():
|
83 |
+
if t.ndim == 1:
|
84 |
+
feats = t.unsqueeze(0)
|
85 |
+
else:
|
86 |
+
feats = t.view(-1, t.shape[-1])
|
87 |
+
rms = feats.float().pow(2).mean(dim=-1).sqrt()
|
88 |
+
rms = torch.nan_to_num(rms, nan=0.0, posinf=0.0, neginf=0.0)
|
89 |
+
self.count += int(rms.numel())
|
90 |
+
self.sum += float(rms.sum().item())
|
91 |
+
self.sumsq += float((rms * rms).sum().item())
|
92 |
+
|
93 |
+
@property
|
94 |
+
def mean(self) -> Optional[float]:
|
95 |
+
if self.count == 0:
|
96 |
+
return None
|
97 |
+
return self.sum / self.count
|
98 |
+
|
99 |
+
@property
|
100 |
+
def var(self) -> Optional[float]:
|
101 |
+
if self.count == 0:
|
102 |
+
return None
|
103 |
+
m = self.mean
|
104 |
+
return max(0.0, self.sumsq / self.count - (m * m))
|
105 |
+
|
106 |
+
@property
|
107 |
+
def std(self) -> Optional[float]:
|
108 |
+
v = self.var
|
109 |
+
if v is None:
|
110 |
+
return None
|
111 |
+
return math.sqrt(v)
|
112 |
+
|
113 |
+
def to_dict(self) -> Dict[str, Any]:
|
114 |
+
return {
|
115 |
+
"count": self.count,
|
116 |
+
"mean": self.mean,
|
117 |
+
"std": self.std,
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
class ActivationMonitor:
|
122 |
+
def __init__(self, use_tensorboard: bool = False, tb_dir: Optional[str] = None):
|
123 |
+
self.stats: Dict[str, RunningStat] = {}
|
124 |
+
self.token_rms: Dict[str, TokenRMSStat] = {}
|
125 |
+
self.use_tensorboard = use_tensorboard
|
126 |
+
self.tb = None
|
127 |
+
self._global_step = 0
|
128 |
+
if self.use_tensorboard and tb_dir is not None:
|
129 |
+
try:
|
130 |
+
from torch.utils.tensorboard import SummaryWriter
|
131 |
+
|
132 |
+
self.tb = SummaryWriter(log_dir=tb_dir)
|
133 |
+
except Exception as e:
|
134 |
+
print(f"TensorBoard not available: {e}")
|
135 |
+
|
136 |
+
def _get_stat(self, name: str) -> RunningStat:
|
137 |
+
if name not in self.stats:
|
138 |
+
self.stats[name] = RunningStat()
|
139 |
+
return self.stats[name]
|
140 |
+
|
141 |
+
def _get_token_rms(self, name: str) -> TokenRMSStat:
|
142 |
+
if name not in self.token_rms:
|
143 |
+
self.token_rms[name] = TokenRMSStat()
|
144 |
+
return self.token_rms[name]
|
145 |
+
|
146 |
+
def hook(self, name: str):
|
147 |
+
def _hook(module, inputs, output):
|
148 |
+
with torch.no_grad():
|
149 |
+
t = output
|
150 |
+
if isinstance(t, tuple):
|
151 |
+
t = t[0]
|
152 |
+
if not isinstance(t, torch.Tensor):
|
153 |
+
return
|
154 |
+
self._get_stat(name).update_from_tensor(t)
|
155 |
+
self._get_token_rms(name).update_from_tensor(t)
|
156 |
+
|
157 |
+
if self.tb is not None and (self._global_step % 10 == 0):
|
158 |
+
rs = self.stats[name]
|
159 |
+
tr = self.token_rms[name]
|
160 |
+
if rs.count > 0:
|
161 |
+
self.tb.add_scalar(
|
162 |
+
f"{name}/mean", rs.mean, self._global_step
|
163 |
+
)
|
164 |
+
if rs.std is not None:
|
165 |
+
self.tb.add_scalar(
|
166 |
+
f"{name}/std", rs.std, self._global_step
|
167 |
+
)
|
168 |
+
self.tb.add_scalar(
|
169 |
+
f"{name}/zero_frac",
|
170 |
+
rs.zero_count / max(1, rs.count),
|
171 |
+
self._global_step,
|
172 |
+
)
|
173 |
+
if tr.count > 0 and tr.mean is not None:
|
174 |
+
self.tb.add_scalar(
|
175 |
+
f"{name}/token_rms_mean",
|
176 |
+
tr.mean,
|
177 |
+
self._global_step,
|
178 |
+
)
|
179 |
+
return
|
180 |
+
|
181 |
+
return _hook
|
182 |
+
|
183 |
+
def step(self):
|
184 |
+
self._global_step += 1
|
185 |
+
|
186 |
+
def close(self):
|
187 |
+
if self.tb is not None:
|
188 |
+
self.tb.flush()
|
189 |
+
self.tb.close()
|
190 |
+
|
191 |
+
def to_dict(self) -> Dict[str, Any]:
|
192 |
+
out: Dict[str, Any] = {}
|
193 |
+
for k in sorted(self.stats.keys()):
|
194 |
+
out[k] = {
|
195 |
+
"global": self.stats[k].to_dict(),
|
196 |
+
"token_rms": self.token_rms[k].to_dict(),
|
197 |
+
}
|
198 |
+
return out
|
199 |
+
|
200 |
+
|
201 |
+
def find_modules_to_hook(
|
202 |
+
model: torch.nn.Module, patterns: List[str]
|
203 |
+
) -> List[str]:
|
204 |
+
names: List[str] = []
|
205 |
+
for name, _ in model.named_modules():
|
206 |
+
lname = name.lower()
|
207 |
+
if not lname.startswith("model.layers."):
|
208 |
+
continue
|
209 |
+
for p in patterns:
|
210 |
+
if p in lname:
|
211 |
+
names.append(name)
|
212 |
+
break
|
213 |
+
return sorted(list(set(names)))
|
214 |
+
|
215 |
+
|
216 |
+
def compute_attention_entropy(
|
217 |
+
model: AutoModelForCausalLM,
|
218 |
+
tok: AutoTokenizer,
|
219 |
+
prompts: List[str],
|
220 |
+
max_length: int,
|
221 |
+
input_device: torch.device,
|
222 |
+
) -> Dict[int, float]:
|
223 |
+
prev = getattr(model.config, "output_attentions", False)
|
224 |
+
model.config.output_attentions = True
|
225 |
+
|
226 |
+
with torch.inference_mode():
|
227 |
+
enc = tok(
|
228 |
+
prompts,
|
229 |
+
return_tensors="pt",
|
230 |
+
padding=True,
|
231 |
+
truncation=True,
|
232 |
+
max_length=max_length,
|
233 |
+
)
|
234 |
+
for k in enc:
|
235 |
+
enc[k] = enc[k].to(input_device)
|
236 |
+
out = model(**enc, output_attentions=True, use_cache=False)
|
237 |
+
atts = out.attentions
|
238 |
+
entropies: Dict[int, float] = {}
|
239 |
+
for i, att in enumerate(atts):
|
240 |
+
probs = att.float().clamp_min(1e-12)
|
241 |
+
ent = -(probs * probs.log()).sum(dim=-1)
|
242 |
+
ent_mean = float(ent.mean().item())
|
243 |
+
entropies[i] = ent_mean
|
244 |
+
|
245 |
+
model.config.output_attentions = prev
|
246 |
+
return entropies
|
247 |
+
|
248 |
+
|
249 |
+
def load_prompts(
|
250 |
+
prompts: Optional[str], prompts_file: Optional[str]
|
251 |
+
) -> List[str]:
|
252 |
+
lines: List[str] = []
|
253 |
+
if prompts_file:
|
254 |
+
with open(prompts_file, "r", encoding="utf-8") as f:
|
255 |
+
for line in f:
|
256 |
+
s = line.strip("\n")
|
257 |
+
if s:
|
258 |
+
lines.append(s)
|
259 |
+
if prompts:
|
260 |
+
for s in prompts.split("\n"):
|
261 |
+
s = s.strip()
|
262 |
+
if s:
|
263 |
+
lines.append(s)
|
264 |
+
if not lines:
|
265 |
+
lines = [
|
266 |
+
"Hello! Briefly introduce yourself.",
|
267 |
+
"Explain the concept of attention in transformers.",
|
268 |
+
"List three use cases for large language models.",
|
269 |
+
]
|
270 |
+
return lines
|
271 |
+
|
272 |
+
|
273 |
+
def main():
|
274 |
+
ap = argparse.ArgumentParser(
|
275 |
+
description="Activation statistics monitor for HF CausalLM models."
|
276 |
+
)
|
277 |
+
ap.add_argument("--model", type=str, required=True, help="Model path or HF ID.")
|
278 |
+
ap.add_argument("--prompts", type=str)
|
279 |
+
ap.add_argument("--prompts_file", type=str)
|
280 |
+
ap.add_argument("--max_length", type=int, default=256)
|
281 |
+
ap.add_argument("--batch_size", type=int, default=4)
|
282 |
+
ap.add_argument(
|
283 |
+
"--dtype",
|
284 |
+
type=str,
|
285 |
+
default="bfloat16",
|
286 |
+
choices=["bfloat16", "float16", "float32"],
|
287 |
+
)
|
288 |
+
ap.add_argument("--device_map", type=str, default="auto")
|
289 |
+
ap.add_argument(
|
290 |
+
"--patterns",
|
291 |
+
type=str,
|
292 |
+
default=(
|
293 |
+
"q_proj,k_proj,v_proj,o_proj,mlp.up_proj,mlp.gate_proj,"
|
294 |
+
"mlp.down_proj,layernorm,norm"
|
295 |
+
),
|
296 |
+
)
|
297 |
+
ap.add_argument("--save_json", type=str)
|
298 |
+
ap.add_argument("--tensorboard_dir", type=str)
|
299 |
+
ap.add_argument("--attention_entropy", action="store_true")
|
300 |
+
args = ap.parse_args()
|
301 |
+
|
302 |
+
dtype_map = {
|
303 |
+
"bfloat16": torch.bfloat16,
|
304 |
+
"float16": torch.float16,
|
305 |
+
"float32": torch.float32,
|
306 |
+
}
|
307 |
+
torch_dtype = dtype_map[args.dtype]
|
308 |
+
|
309 |
+
print(f"Loading tokenizer/model: {args.model}")
|
310 |
+
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
311 |
+
model = AutoModelForCausalLM.from_pretrained(
|
312 |
+
args.model,
|
313 |
+
torch_dtype=torch_dtype,
|
314 |
+
trust_remote_code=True,
|
315 |
+
device_map=args.device_map,
|
316 |
+
)
|
317 |
+
model.eval()
|
318 |
+
|
319 |
+
embed_device = model.get_input_embeddings().weight.device
|
320 |
+
print(f"Sending inputs to: {embed_device}")
|
321 |
+
|
322 |
+
patterns = [p.strip().lower() for p in args.patterns.split(",") if p.strip()]
|
323 |
+
to_hook = find_modules_to_hook(model, patterns)
|
324 |
+
|
325 |
+
mon = ActivationMonitor(
|
326 |
+
use_tensorboard=args.tensorboard_dir is not None,
|
327 |
+
tb_dir=args.tensorboard_dir,
|
328 |
+
)
|
329 |
+
handles = []
|
330 |
+
for name, module in model.named_modules():
|
331 |
+
if name in to_hook:
|
332 |
+
handles.append(module.register_forward_hook(mon.hook(name)))
|
333 |
+
print(f"Registered hooks on {len(handles)} modules.")
|
334 |
+
|
335 |
+
prompts = load_prompts(args.prompts, args.prompts_file)
|
336 |
+
|
337 |
+
with torch.inference_mode():
|
338 |
+
i = 0
|
339 |
+
while i < len(prompts):
|
340 |
+
batch_prompts = prompts[i : i + args.batch_size]
|
341 |
+
i += args.batch_size
|
342 |
+
enc = tok(
|
343 |
+
batch_prompts,
|
344 |
+
return_tensors="pt",
|
345 |
+
padding=True,
|
346 |
+
truncation=True,
|
347 |
+
max_length=args.max_length,
|
348 |
+
)
|
349 |
+
for k in enc:
|
350 |
+
enc[k] = enc[k].to(embed_device)
|
351 |
+
_ = model(**enc, use_cache=False)
|
352 |
+
mon.step()
|
353 |
+
|
354 |
+
attn_entropy: Dict[int, float] = {}
|
355 |
+
if args.attention_entropy:
|
356 |
+
subset = prompts[: min(len(prompts), args.batch_size)]
|
357 |
+
attn_entropy = compute_attention_entropy(
|
358 |
+
model, tok, subset, args.max_length, embed_device
|
359 |
+
)
|
360 |
+
|
361 |
+
for h in handles:
|
362 |
+
h.remove()
|
363 |
+
mon.close()
|
364 |
+
|
365 |
+
stats = mon.to_dict()
|
366 |
+
if args.attention_entropy:
|
367 |
+
stats["_attention_entropy"] = attn_entropy
|
368 |
+
|
369 |
+
print("\nActivation summary (top 10 by token_rms mean):")
|
370 |
+
ranked = sorted(
|
371 |
+
[
|
372 |
+
(name, d["token_rms"]["mean"] or 0.0)
|
373 |
+
for name, d in stats.items()
|
374 |
+
if name != "_attention_entropy"
|
375 |
+
],
|
376 |
+
key=lambda x: x[1],
|
377 |
+
reverse=True,
|
378 |
+
)[:10]
|
379 |
+
for name, rms_mean in ranked:
|
380 |
+
g = stats[name]["global"]
|
381 |
+
zero_frac = g.get("zero_count", 0) / max(1, g.get("count", 1))
|
382 |
+
print(
|
383 |
+
f"- {name}: token_rms_mean={rms_mean:.4f}, "
|
384 |
+
f"mean={g.get('mean'):.4f} std={g.get('std'):.4f} "
|
385 |
+
f"min={g.get('min'):.4f} max={g.get('max'):.4f} "
|
386 |
+
f"zero_frac={zero_frac:.4f}"
|
387 |
+
)
|
388 |
+
|
389 |
+
if args.save_json:
|
390 |
+
out_path = Path(args.save_json)
|
391 |
+
out_path.parent.mkdir(parents=True, exist_ok=True)
|
392 |
+
with open(out_path, "w") as f:
|
393 |
+
json.dump(stats, f, indent=2)
|
394 |
+
print(f"\nSaved stats JSON to: {out_path}")
|
395 |
+
|
396 |
+
|
397 |
+
if __name__ == "__main__":
|
398 |
+
main()
|
finetune_qwen.py
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from datasets import load_from_disk, concatenate_datasets, Dataset
|
4 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
|
5 |
+
from peft import LoraConfig, prepare_model_for_kbit_training, PeftModel
|
6 |
+
from peft.tuners.lora import LoraLayer
|
7 |
+
from trl import SFTTrainer, SFTConfig
|
8 |
+
import logging
|
9 |
+
import torch.distributed as dist
|
10 |
+
from datetime import timedelta, datetime
|
11 |
+
import time
|
12 |
+
from transformers.trainer import TrainerCallback
|
13 |
+
import gc
|
14 |
+
import sys
|
15 |
+
import shutil # For handling file operations
|
16 |
+
import glob # For file pattern matching
|
17 |
+
import threading # For background cleanup
|
18 |
+
import multiprocessing
|
19 |
+
import subprocess
|
20 |
+
import tempfile
|
21 |
+
import json
|
22 |
+
import random
|
23 |
+
import math
|
24 |
+
import queue
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
# Import the specific layer class for FSDP wrapping
|
28 |
+
try:
|
29 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
30 |
+
except ImportError:
|
31 |
+
logging.warning("Could not import Qwen2DecoderLayer. FSDP wrapping might fail.")
|
32 |
+
Qwen2DecoderLayer = None
|
33 |
+
|
34 |
+
# Configure more detailed logging with timestamps
|
35 |
+
logging.basicConfig(
|
36 |
+
level=logging.INFO,
|
37 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
38 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
39 |
+
stream=sys.stdout, # Ensure logs go to stdout for immediate visibility
|
40 |
+
force=True
|
41 |
+
)
|
42 |
+
|
43 |
+
# Set up temporary directory for cache files
|
44 |
+
temp_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "temp")
|
45 |
+
os.makedirs(temp_dir, exist_ok=True)
|
46 |
+
logging.info(f"Using temporary directory: {temp_dir}")
|
47 |
+
|
48 |
+
# Set environment variables to control temporary file creation
|
49 |
+
os.environ["TMPDIR"] = temp_dir # Unix
|
50 |
+
os.environ["TEMP"] = temp_dir # Windows
|
51 |
+
os.environ["TMP"] = temp_dir # Windows alternative
|
52 |
+
|
53 |
+
# Set default cache locations
|
54 |
+
hf_datasets_cache_path = os.path.join(temp_dir, "hf_datasets_cache")
|
55 |
+
transformers_cache_path = os.path.join(temp_dir, "transformers_cache")
|
56 |
+
hf_home_path = os.path.join(temp_dir, "hf_home")
|
57 |
+
os.makedirs(hf_datasets_cache_path, exist_ok=True)
|
58 |
+
os.makedirs(transformers_cache_path, exist_ok=True)
|
59 |
+
os.makedirs(hf_home_path, exist_ok=True)
|
60 |
+
|
61 |
+
os.environ["HF_DATASETS_CACHE"] = hf_datasets_cache_path
|
62 |
+
os.environ["TRANSFORMERS_CACHE"] = transformers_cache_path
|
63 |
+
os.environ["HF_HOME"] = hf_home_path
|
64 |
+
logging.info(f"Hugging Face Datasets cache directed to: {hf_datasets_cache_path}")
|
65 |
+
logging.info(f"Hugging Face Transformers cache directed to: {transformers_cache_path}")
|
66 |
+
|
67 |
+
# Keep forcing Arrow to use system memory pool if possible
|
68 |
+
os.environ["ARROW_DEFAULT_MEMORY_POOL"] = "system"
|
69 |
+
logging.info("Configured temporary directory and cache locations.")
|
70 |
+
|
71 |
+
# Set environment variable to control PyTorch's memory allocator
|
72 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:512"
|
73 |
+
# Disable PYTORCH_NO_CUDA_MEMORY_CACHING for better performance
|
74 |
+
if "PYTORCH_NO_CUDA_MEMORY_CACHING" in os.environ:
|
75 |
+
del os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"]
|
76 |
+
# Set a longer timeout for NCCL operations
|
77 |
+
os.environ["NCCL_BLOCKING_WAIT"] = "1"
|
78 |
+
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1"
|
79 |
+
os.environ["NCCL_TIMEOUT"] = "3600" # 1 hour timeout for NCCL operations
|
80 |
+
|
81 |
+
# Initialize distributed environment with better error handling
|
82 |
+
def init_distributed():
|
83 |
+
try:
|
84 |
+
# Check if we're in a distributed training environment
|
85 |
+
if "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1:
|
86 |
+
# Set memory optimization environment variables
|
87 |
+
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
88 |
+
logging.info("Setting PyTorch memory optimizations for H200 GPUs")
|
89 |
+
# Empty CUDA cache before initializing process group
|
90 |
+
if torch.cuda.is_available():
|
91 |
+
torch.cuda.empty_cache()
|
92 |
+
logging.info("CUDA cache cleared")
|
93 |
+
|
94 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
95 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
96 |
+
rank = int(os.environ.get("RANK", 0))
|
97 |
+
|
98 |
+
logging.info(f"Initializing distributed training for 8x H200s. Rank: {rank}, Local Rank: {local_rank}, World Size: {world_size}")
|
99 |
+
|
100 |
+
# Set the device for this process explicitly before initializing
|
101 |
+
torch.cuda.set_device(local_rank)
|
102 |
+
logging.info(f"Setting device {local_rank} for process rank {rank}")
|
103 |
+
|
104 |
+
# Set a longer timeout to handle long operations (3 hours)
|
105 |
+
timeout = timedelta(hours=3)
|
106 |
+
|
107 |
+
# Initialize the distributed process group
|
108 |
+
dist.init_process_group(
|
109 |
+
backend='nccl',
|
110 |
+
init_method='env://',
|
111 |
+
timeout=timeout,
|
112 |
+
rank=rank,
|
113 |
+
world_size=world_size
|
114 |
+
)
|
115 |
+
|
116 |
+
# Verify initialization was successful
|
117 |
+
if dist.is_initialized():
|
118 |
+
logging.info(f"Successfully initialized distributed process group. Rank: {rank}, Device: {torch.cuda.current_device()}")
|
119 |
+
# Log NCCL environment
|
120 |
+
logging.info(f"NCCL Version: {torch.cuda.nccl.version() if hasattr(torch.cuda, 'nccl') else 'unknown'}")
|
121 |
+
logging.info(f"CUDA Device Count: {torch.cuda.device_count()}")
|
122 |
+
logging.info(f"CUDA Device Name: {torch.cuda.get_device_name(local_rank)}")
|
123 |
+
else:
|
124 |
+
logging.error(f"Failed to initialize distributed process group. Rank: {rank}")
|
125 |
+
|
126 |
+
# Ensure all processes can communicate with specified device
|
127 |
+
try:
|
128 |
+
device_ids = [local_rank]
|
129 |
+
dist.barrier(device_ids=device_ids)
|
130 |
+
logging.info(f"Communication test successful. Process {rank} on device {local_rank} can communicate.")
|
131 |
+
except Exception as e:
|
132 |
+
logging.error(f"Communication test failed. Processes cannot communicate: {str(e)}. Rank: {rank}")
|
133 |
+
raise
|
134 |
+
|
135 |
+
return True
|
136 |
+
else:
|
137 |
+
logging.info("Not running in distributed mode.")
|
138 |
+
return False
|
139 |
+
except Exception as e:
|
140 |
+
logging.error(f"Error initializing distributed environment: {str(e)}")
|
141 |
+
raise
|
142 |
+
|
143 |
+
# Initialize distributed environment
|
144 |
+
distributed_mode = init_distributed()
|
145 |
+
|
146 |
+
# --- Configuration ---
|
147 |
+
|
148 |
+
# Model ID updated based on user input
|
149 |
+
MODEL_ID = "Qwen/QwQ-32B"
|
150 |
+
|
151 |
+
# Path to the processed dataset created by preprocess_data.py
|
152 |
+
DATASET_PATH = "./processed_datasets/combined_code_finetune_data"
|
153 |
+
|
154 |
+
# Number of examples to use (set to -1 for all)
|
155 |
+
MAX_EXAMPLES = -1 # Use all examples by default
|
156 |
+
|
157 |
+
# LoRA configuration (Optimized for 8x H200 GPUs)
|
158 |
+
LORA_R = 64 # Doubled to increase parameter count significantly
|
159 |
+
LORA_ALPHA = 128 # Increased alpha to match r
|
160 |
+
LORA_DROPOUT = 0.05 # Dropout probability for LoRA layers
|
161 |
+
# Target modules might need verification for QwQ-32B specifically.
|
162 |
+
# Common targets for Qwen models:
|
163 |
+
LORA_TARGET_MODULES = [
|
164 |
+
"q_proj",
|
165 |
+
"k_proj",
|
166 |
+
"v_proj",
|
167 |
+
"o_proj",
|
168 |
+
"gate_proj",
|
169 |
+
"up_proj",
|
170 |
+
"down_proj",
|
171 |
+
# "embed_tokens", # Removed to reduce overhead/complexity
|
172 |
+
# "lm_head", # Removed to reduce overhead/complexity
|
173 |
+
]
|
174 |
+
|
175 |
+
# Training arguments optimized for 8x H200 GPUs with memory constraints
|
176 |
+
OUTPUT_DIR = "./qwq-32b-finetuned-adapters"
|
177 |
+
PER_DEVICE_TRAIN_BATCH_SIZE = 8 # Increase BS after halving seq length again
|
178 |
+
GRADIENT_ACCUMULATION_STEPS = 6 # Decrease accumulation (8*8*6 = 384)
|
179 |
+
# Global batch size = PER_DEVICE_TRAIN_BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS * NumGPUs
|
180 |
+
# Example: 8 * 6 * 8 = 384
|
181 |
+
LEARNING_RATE = 3e-5 # Slightly higher LR for larger batch size
|
182 |
+
EPOCHS = 1 # Start with 1 epoch, increase cautiously
|
183 |
+
MAX_SEQ_LENGTH = 4096 # Halved sequence length again
|
184 |
+
LOGGING_STEPS = 50 # Increased logging frequency
|
185 |
+
SAVE_STEPS = 500 # Increased save frequency
|
186 |
+
OPTIMIZER = "adamw_bnb_8bit" # Use 8-bit optimizer to save significant memory
|
187 |
+
WARMUP_RATIO = 0.03
|
188 |
+
LR_SCHEDULER_TYPE = "cosine"
|
189 |
+
|
190 |
+
# H200-specific optimizations (8x setup)
|
191 |
+
USE_FLASH_ATTN = True # Enable Flash Attention 2 for H200s
|
192 |
+
USE_SEQUENCE_PARALLEL = False # Disable when using FSDP
|
193 |
+
USE_BETTER_TRANSFORMERS = True # Use better transformers for optimized kernels
|
194 |
+
DATALOADER_NUM_WORKERS = 8 # Reduced workers to avoid CPU contention
|
195 |
+
TOKENIZATION_NUM_WORKERS = 224 # Maximum worker count for tokenization
|
196 |
+
USE_ACTIVATION_CHECKPOINTING = True # Enable activation checkpointing to save memory with long sequences
|
197 |
+
|
198 |
+
# Advanced distributed training options for 8x GPUs
|
199 |
+
USE_FSDP = True # Enable FSDP
|
200 |
+
FSDP_CONFIG = {
|
201 |
+
"fsdp_offload_params": False, # Disable CPU Offload
|
202 |
+
"fsdp_sharding_strategy": 1, # 1 = FULL_SHARD
|
203 |
+
"fsdp_auto_wrap_policy": "TRANSFORMER_BASED_WRAP",
|
204 |
+
"fsdp_transformer_layer_cls_to_wrap": [Qwen2DecoderLayer.__name__] if Qwen2DecoderLayer else [],
|
205 |
+
"fsdp_state_dict_type": "SHARDED_STATE_DICT",
|
206 |
+
"fsdp_backward_prefetch": "backward_post", # Changed from backward_pre
|
207 |
+
"fsdp_forward_prefetch": False, # Disabled forward prefetch
|
208 |
+
"fsdp_activation_checkpointing": [Qwen2DecoderLayer.__name__] if Qwen2DecoderLayer else [], # Use FSDP activation checkpointing
|
209 |
+
}
|
210 |
+
|
211 |
+
# WandB Integration
|
212 |
+
REPORT_TO_WANDB = True # Set to False to disable WandB reporting
|
213 |
+
WANDB_PROJECT_NAME = "QwQ-32B-Finetune-8xH200" # Updated for 8x GPUs
|
214 |
+
WANDB_ENTITY = None # Set to your username or team name if needed
|
215 |
+
|
216 |
+
# Determine report_to destination
|
217 |
+
report_to = "none"
|
218 |
+
if REPORT_TO_WANDB:
|
219 |
+
# Disable WandB in all processes except rank 0 in distributed mode
|
220 |
+
if distributed_mode and int(os.environ.get("LOCAL_RANK", 0)) != 0:
|
221 |
+
logging.info(f"Rank {os.environ.get('RANK', '?')}: Disabling WandB")
|
222 |
+
os.environ["WANDB_DISABLED"] = "true"
|
223 |
+
report_to = "none" # Explicitly set to none for non-main processes
|
224 |
+
else:
|
225 |
+
# Main process or non-distributed mode, attempt WandB initialization
|
226 |
+
try:
|
227 |
+
import wandb
|
228 |
+
logging.info("Initializing WandB directly...")
|
229 |
+
run_name = f"qwq-32b-finetune-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
|
230 |
+
if wandb.run is None:
|
231 |
+
try:
|
232 |
+
wandb.init(
|
233 |
+
project=WANDB_PROJECT_NAME,
|
234 |
+
entity=WANDB_ENTITY,
|
235 |
+
name=run_name,
|
236 |
+
config={
|
237 |
+
"model_name": MODEL_ID,
|
238 |
+
"batch_size": PER_DEVICE_TRAIN_BATCH_SIZE,
|
239 |
+
"gradient_accumulation_steps": GRADIENT_ACCUMULATION_STEPS,
|
240 |
+
"learning_rate": LEARNING_RATE,
|
241 |
+
"epochs": EPOCHS,
|
242 |
+
"sequence_length": MAX_SEQ_LENGTH,
|
243 |
+
"lora_r": LORA_R,
|
244 |
+
"lora_alpha": LORA_ALPHA,
|
245 |
+
}
|
246 |
+
)
|
247 |
+
logging.info(f"WandB initialized: {wandb.run.name} (ID: {wandb.run.id})")
|
248 |
+
report_to = "wandb"
|
249 |
+
except Exception as e:
|
250 |
+
logging.error(f"WandB initialization error: {str(e)}")
|
251 |
+
report_to = "tensorboard"
|
252 |
+
else:
|
253 |
+
logging.info(f"Using existing WandB run: {wandb.run.name} (ID: {wandb.run.id})")
|
254 |
+
report_to = "wandb"
|
255 |
+
except ImportError:
|
256 |
+
logging.warning("WandB package not installed. Reporting to TensorBoard.")
|
257 |
+
report_to = "tensorboard"
|
258 |
+
except Exception as wandb_init_e:
|
259 |
+
logging.error(f"General WandB setup error: {wandb_init_e}")
|
260 |
+
report_to = "tensorboard"
|
261 |
+
# If WandB reporting is disabled, set report_to accordingly
|
262 |
+
elif not distributed_mode:
|
263 |
+
report_to = "tensorboard"
|
264 |
+
logging.info("WandB reporting disabled. Reporting to TensorBoard.")
|
265 |
+
else: # If WandB is disabled and it IS distributed
|
266 |
+
report_to = "none"
|
267 |
+
logging.info("WandB reporting disabled for this distributed rank.")
|
268 |
+
|
269 |
+
# Quantization (QLoRA)
|
270 |
+
USE_4BIT_QUANTIZATION = False # Disable QLoRA due to FSDP incompatibility
|
271 |
+
BNB_4BIT_COMPUTE_DTYPE = "bfloat16" # Use bfloat16 if supported, else float16
|
272 |
+
BNB_4BIT_QUANT_TYPE = "nf4"
|
273 |
+
|
274 |
+
# --- Check Optional Dependencies (Define flags globally) ---
|
275 |
+
FLASH_ATTN_AVAILABLE = False
|
276 |
+
BETTER_TRANSFORMERS_AVAILABLE = False
|
277 |
+
try:
|
278 |
+
import flash_attn
|
279 |
+
FLASH_ATTN_AVAILABLE = True
|
280 |
+
logging.info("Flash Attention available - will be used if enabled.")
|
281 |
+
except ImportError:
|
282 |
+
logging.warning("Flash Attention not available. Install with 'pip install flash-attn'")
|
283 |
+
|
284 |
+
try:
|
285 |
+
from optimum.bettertransformer import BetterTransformer
|
286 |
+
BETTER_TRANSFORMERS_AVAILABLE = True
|
287 |
+
logging.info("Better Transformers available - will be used if enabled.")
|
288 |
+
except ImportError:
|
289 |
+
logging.warning("Better Transformers not available. Install with 'pip install optimum'")
|
290 |
+
|
291 |
+
# --- Check Dataset ---
|
292 |
+
if not os.path.exists(DATASET_PATH):
|
293 |
+
logging.error(f"Dataset not found at {DATASET_PATH}. Run preprocess_data.py first.")
|
294 |
+
exit(1)
|
295 |
+
|
296 |
+
logging.info(f"Loading dataset from {DATASET_PATH}...")
|
297 |
+
|
298 |
+
# Load dataset normally
|
299 |
+
dataset = load_from_disk(DATASET_PATH)
|
300 |
+
|
301 |
+
# Apply truncation if needed
|
302 |
+
if MAX_EXAMPLES > 0 and len(dataset) > MAX_EXAMPLES:
|
303 |
+
logging.info(f"Truncating dataset to {MAX_EXAMPLES} examples")
|
304 |
+
indices = list(range(min(MAX_EXAMPLES, len(dataset))))
|
305 |
+
dataset = dataset.select(indices)
|
306 |
+
|
307 |
+
logging.info(f"Dataset loaded: {dataset} with {len(dataset)} examples")
|
308 |
+
|
309 |
+
# --- Tokenizer ---
|
310 |
+
logging.info(f"Loading tokenizer for {MODEL_ID}...")
|
311 |
+
|
312 |
+
# Enable fast tokenizer and optimizations
|
313 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
314 |
+
MODEL_ID,
|
315 |
+
use_fast=True, # Explicitly request the fast Rust-based tokenizer
|
316 |
+
trust_remote_code=True,
|
317 |
+
# model_max_length=MAX_SEQ_LENGTH,
|
318 |
+
padding_side="right",
|
319 |
+
)
|
320 |
+
|
321 |
+
# Log tokenizer type for verification
|
322 |
+
if hasattr(tokenizer, 'is_fast') and tokenizer.is_fast:
|
323 |
+
logging.info(f"Successfully loaded fast tokenizer (Rust implementation): {type(tokenizer).__name__}")
|
324 |
+
# Fast tokenizers are automatically parallel in dataset.map() when num_proc > 1
|
325 |
+
logging.info(f"Fast tokenizer will use parallel processing during dataset.map() with {TOKENIZATION_NUM_WORKERS} workers")
|
326 |
+
else:
|
327 |
+
logging.warning(f"Using Python tokenizer: {type(tokenizer).__name__}")
|
328 |
+
logging.warning("Python tokenizers are slower than Rust-based fast tokenizers")
|
329 |
+
|
330 |
+
# Check and set pad token based on Qwen documentation (<|endoftext|>)
|
331 |
+
# Qwen models might have this set correctly, but we verify.
|
332 |
+
EXPECTED_PAD_TOKEN = "<|endoftext|>"
|
333 |
+
if tokenizer.pad_token is None or tokenizer.pad_token != EXPECTED_PAD_TOKEN:
|
334 |
+
logging.warning(f"Tokenizer pad_token is missing or not '{EXPECTED_PAD_TOKEN}'. Setting pad_token='{EXPECTED_PAD_TOKEN}'.")
|
335 |
+
tokenizer.pad_token = EXPECTED_PAD_TOKEN
|
336 |
+
|
337 |
+
# Enable padding and truncation defaults for batch processing
|
338 |
+
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token
|
339 |
+
tokenizer.padding_side = "right" # Typically "right" for decoder-only models like Qwen
|
340 |
+
|
341 |
+
# Log tokenizer configuration
|
342 |
+
logging.info(f"Tokenizer configuration:")
|
343 |
+
logging.info(f" - Type: {'Fast' if hasattr(tokenizer, 'is_fast') and tokenizer.is_fast else 'Python'}")
|
344 |
+
logging.info(f" - Pad token: {tokenizer.pad_token}")
|
345 |
+
logging.info(f" - EOS token: {tokenizer.eos_token}") # Should be <|im_end|>
|
346 |
+
logging.info(f" - Vocab size: {tokenizer.vocab_size}")
|
347 |
+
logging.info(f" - Model max length: {tokenizer.model_max_length}")
|
348 |
+
logging.info(f" - Padding side: {tokenizer.padding_side}")
|
349 |
+
|
350 |
+
# Define parallel preprocessing function for the dataset
|
351 |
+
def preprocess_function(examples):
|
352 |
+
return tokenizer(
|
353 |
+
examples["text"],
|
354 |
+
padding="max_length",
|
355 |
+
truncation=True,
|
356 |
+
max_length=MAX_SEQ_LENGTH,
|
357 |
+
return_tensors=None, # Return Python lists for dataset
|
358 |
+
)
|
359 |
+
|
360 |
+
# Create a cache directory for tokenized datasets
|
361 |
+
TOKENIZED_DATASET_CACHE_DIR = os.path.join(os.path.dirname(DATASET_PATH), "tokenized_cache")
|
362 |
+
os.makedirs(TOKENIZED_DATASET_CACHE_DIR, exist_ok=True)
|
363 |
+
tokenized_dataset_path = os.path.join(TOKENIZED_DATASET_CACHE_DIR, "tokenized_dataset")
|
364 |
+
|
365 |
+
# Create a file to signal tokenization completion
|
366 |
+
tokenization_done_file = os.path.join(TOKENIZED_DATASET_CACHE_DIR, "tokenization_complete")
|
367 |
+
|
368 |
+
# Function to clean up temporary files in dataset directory
|
369 |
+
def delete_existing_tmp_files():
|
370 |
+
"""Find and delete any existing tmp files in dataset directory"""
|
371 |
+
# Look for tmp files in dataset directory
|
372 |
+
tmp_files = glob.glob(os.path.join(DATASET_PATH, "tmp*"))
|
373 |
+
|
374 |
+
if tmp_files:
|
375 |
+
logging.info(f"Found {len(tmp_files)} existing tmp files, removing...")
|
376 |
+
for tmp_file in tmp_files:
|
377 |
+
try:
|
378 |
+
if os.path.isdir(tmp_file):
|
379 |
+
shutil.rmtree(tmp_file)
|
380 |
+
else:
|
381 |
+
os.remove(tmp_file)
|
382 |
+
logging.info(f"Removed: {tmp_file}")
|
383 |
+
except Exception as e:
|
384 |
+
logging.warning(f"Could not remove {tmp_file}: {str(e)}")
|
385 |
+
else:
|
386 |
+
logging.info("No existing tmp files found")
|
387 |
+
|
388 |
+
# Check if we're in distributed mode and get rank
|
389 |
+
if distributed_mode:
|
390 |
+
rank = int(os.environ.get("RANK", "0"))
|
391 |
+
world_size = int(os.environ.get("WORLD_SIZE", "1"))
|
392 |
+
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
|
393 |
+
is_main_process = rank == 0
|
394 |
+
logging.info(f"Rank {rank}/{world_size}: Preparing for dataset processing")
|
395 |
+
else:
|
396 |
+
is_main_process = True
|
397 |
+
rank = 0
|
398 |
+
world_size = 1
|
399 |
+
local_rank = 0
|
400 |
+
|
401 |
+
# Clean up temp files - only on main process to avoid conflicts
|
402 |
+
if is_main_process:
|
403 |
+
delete_existing_tmp_files()
|
404 |
+
# Also remove the tokenization_done_file if it exists
|
405 |
+
if os.path.exists(tokenization_done_file):
|
406 |
+
os.remove(tokenization_done_file)
|
407 |
+
logging.info(f"Rank {rank}: Removed old tokenization completion marker")
|
408 |
+
|
409 |
+
# Only tokenize on main process (rank 0) to avoid redundant work
|
410 |
+
need_tokenization = False
|
411 |
+
|
412 |
+
# Check if tokenized dataset already exists
|
413 |
+
if os.path.exists(tokenized_dataset_path) and os.path.isdir(tokenized_dataset_path):
|
414 |
+
# --- Dataset Exists ---
|
415 |
+
logging.info(f"Rank {rank}: Found existing tokenized dataset at {tokenized_dataset_path}")
|
416 |
+
path_to_load = tokenized_dataset_path # All ranks will load from the persistent path
|
417 |
+
need_tokenization = False
|
418 |
+
|
419 |
+
# Rank 0 ensures completion marker exists
|
420 |
+
if is_main_process and not os.path.exists(tokenization_done_file):
|
421 |
+
total_original_examples = "unknown"
|
422 |
+
try:
|
423 |
+
from datasets import load_dataset_builder # Local import
|
424 |
+
original_dataset_info = load_dataset_builder(DATASET_PATH).info
|
425 |
+
total_original_examples = original_dataset_info.splits['train'].num_examples
|
426 |
+
except Exception as info_e:
|
427 |
+
logging.warning(f"Rank {rank}: Could not get original dataset info: {info_e}")
|
428 |
+
try:
|
429 |
+
# Get size of existing loaded dataset (approximate if needed)
|
430 |
+
# This requires loading a small part or metadata, might be slow
|
431 |
+
# For now, let's just mark it as existing
|
432 |
+
# loaded_size = len(load_from_disk(tokenized_dataset_path, keep_in_memory=False))
|
433 |
+
loaded_size = "unknown (loaded existing)"
|
434 |
+
with open(tokenization_done_file, "w") as f:
|
435 |
+
f.write(f"Tokenization assumed complete (loaded existing) at {datetime.now().isoformat()}\n")
|
436 |
+
f.write(f"Processed {loaded_size} examples out of {total_original_examples}\n")
|
437 |
+
logging.info(f"Rank {rank}: Created tokenization completion marker as it was missing.")
|
438 |
+
except Exception as file_e:
|
439 |
+
logging.error(f"Rank {rank}: Failed to create missing completion marker: {file_e}")
|
440 |
+
# Proceeding anyway, but other ranks might hang if they rely solely on the file
|
441 |
+
|
442 |
+
# Non-main ranks still need to wait for the marker to be sure Rank 0 checked/created it
|
443 |
+
elif not is_main_process:
|
444 |
+
logging.info(f"Rank {rank}: Waiting for main process confirmation via marker file...")
|
445 |
+
max_wait_time = 300 # Shorter wait, just confirming file exists
|
446 |
+
wait_start = time.time()
|
447 |
+
while not os.path.exists(tokenization_done_file):
|
448 |
+
if time.time() - wait_start > max_wait_time:
|
449 |
+
logging.error(f"Rank {rank}: Timed out waiting for marker file from Rank 0.")
|
450 |
+
raise TimeoutError("Marker file wait timeout")
|
451 |
+
time.sleep(5)
|
452 |
+
logging.info(f"Rank {rank}: Marker file found.")
|
453 |
+
|
454 |
+
elif is_main_process: # Tokenized doesn't exist, Rank 0 needs to create it
|
455 |
+
logging.info(f"Rank {rank}: Tokenization required. Proceeding with tokenization...")
|
456 |
+
need_tokenization = True
|
457 |
+
path_to_load = None
|
458 |
+
|
459 |
+
elif distributed_mode: # Tokenized doesn't exist, non-main ranks need to wait
|
460 |
+
logging.info(f"Rank {rank}: Tokenization required. Waiting for main process...")
|
461 |
+
need_tokenization = True
|
462 |
+
path_to_load = tokenized_dataset_path
|
463 |
+
|
464 |
+
# --- Perform Tokenization (if needed by Rank 0) ---
|
465 |
+
if need_tokenization and is_main_process:
|
466 |
+
tokenized_dataset_obj = None # Use a distinct name for the object returned by map
|
467 |
+
try:
|
468 |
+
# Process the dataset using dataset.map with internal parallelism
|
469 |
+
start_time = time.time() # Define start_time here
|
470 |
+
|
471 |
+
# Standard tokenization with caching enabled
|
472 |
+
logging.info(f"Rank {rank}: Starting tokenization using dataset.map with {TOKENIZATION_NUM_WORKERS} workers.")
|
473 |
+
|
474 |
+
tokenized_dataset_obj = dataset.map(
|
475 |
+
preprocess_function,
|
476 |
+
batched=True,
|
477 |
+
batch_size=1000,
|
478 |
+
num_proc=TOKENIZATION_NUM_WORKERS,
|
479 |
+
remove_columns=["text"],
|
480 |
+
load_from_cache_file=True, # Allow using cache file if it exists
|
481 |
+
desc=f"Tokenizing dataset ({TOKENIZATION_NUM_WORKERS} workers)"
|
482 |
+
)
|
483 |
+
|
484 |
+
elapsed = time.time() - start_time
|
485 |
+
logging.info(f"Rank {rank}: Tokenization successful in {elapsed:.2f} seconds.")
|
486 |
+
|
487 |
+
# If tokenization was successful:
|
488 |
+
if tokenized_dataset_obj is not None:
|
489 |
+
logging.info(f"Rank {rank}: Dataset tokenization completed.")
|
490 |
+
|
491 |
+
# Save directly to final path
|
492 |
+
logging.info(f"Rank {rank}: Saving tokenized dataset to {tokenized_dataset_path}...")
|
493 |
+
save_start = time.time()
|
494 |
+
|
495 |
+
# Ensure target directory doesn't exist (needed for clean save)
|
496 |
+
if os.path.exists(tokenized_dataset_path):
|
497 |
+
shutil.rmtree(tokenized_dataset_path)
|
498 |
+
|
499 |
+
tokenized_dataset_obj.save_to_disk(tokenized_dataset_path)
|
500 |
+
save_elapsed = time.time() - save_start
|
501 |
+
logging.info(f"Rank {rank}: Tokenized dataset saved in {save_elapsed:.2f} seconds.")
|
502 |
+
|
503 |
+
# Create completion marker file ONLY after successful save
|
504 |
+
with open(tokenization_done_file, "w") as f:
|
505 |
+
f.write(f"Tokenization completed and saved at {datetime.now().isoformat()}\n")
|
506 |
+
logging.info(f"Rank {rank}: Created tokenization completion marker")
|
507 |
+
|
508 |
+
# Keep the result in memory for Rank 0 for immediate use
|
509 |
+
dataset = tokenized_dataset_obj
|
510 |
+
path_to_load = None # Rank 0 uses the in-memory object directly
|
511 |
+
|
512 |
+
except Exception as e:
|
513 |
+
logging.error(f"Rank {rank}: Tokenization failed: {e}")
|
514 |
+
import traceback
|
515 |
+
logging.error(traceback.format_exc())
|
516 |
+
# Create done file indicating failure
|
517 |
+
with open(tokenization_done_file, "w") as f:
|
518 |
+
f.write(f"Tokenization FAILED at {datetime.now().isoformat()}\nError: {e}")
|
519 |
+
raise RuntimeError("Tokenization failed.") from e
|
520 |
+
|
521 |
+
# --- Load Dataset (All Ranks) ---
|
522 |
+
# This block now runs for all ranks *after* rank 0 has either tokenized or copied data
|
523 |
+
dataset_for_trainer = None # Use a distinct variable name for clarity
|
524 |
+
if path_to_load: # If path_to_load is set (means rank 0 copied or non-main rank needs to load)
|
525 |
+
if not is_main_process and need_tokenization:
|
526 |
+
# Non-main ranks wait for the done file if tokenization was required
|
527 |
+
logging.info(f"Rank {rank}: Waiting for tokenization completion signal (already checked for existence)...")
|
528 |
+
# Wait logic already happened if we got here and path_to_load is set
|
529 |
+
pass
|
530 |
+
|
531 |
+
# All ranks with a path_to_load proceed to load
|
532 |
+
logging.info(f"Rank {rank}: Loading dataset from {path_to_load}...")
|
533 |
+
load_start_time = time.time()
|
534 |
+
try:
|
535 |
+
# Load without forcing into memory initially
|
536 |
+
dataset_for_trainer = load_from_disk(path_to_load, keep_in_memory=False)
|
537 |
+
load_elapsed = time.time() - load_start_time
|
538 |
+
logging.info(f"Rank {rank}: Successfully loaded dataset in {load_elapsed:.2f}s. Length: {len(dataset_for_trainer)}")
|
539 |
+
except Exception as e:
|
540 |
+
logging.error(f"Rank {rank}: CRITICAL - Failed to load dataset from {path_to_load}: {e}")
|
541 |
+
raise
|
542 |
+
elif is_main_process and not need_tokenization:
|
543 |
+
# Rank 0 loaded existing, copied to RAM disk, and path_to_load points there
|
544 |
+
# It still needs to load it for the trainer
|
545 |
+
logging.info(f"Rank {rank}: Loading dataset from RAM disk copy {path_to_load}...")
|
546 |
+
try:
|
547 |
+
dataset_for_trainer = load_from_disk(path_to_load, keep_in_memory=False)
|
548 |
+
logging.info(f"Rank {rank}: Successfully loaded dataset from RAM disk copy.")
|
549 |
+
except Exception as e:
|
550 |
+
logging.error(f"Rank {rank}: CRITICAL - Failed to load from RAM disk copy {path_to_load}: {e}")
|
551 |
+
raise
|
552 |
+
elif is_main_process and need_tokenization:
|
553 |
+
# Rank 0 just tokenized, 'dataset' variable already holds the result in memory
|
554 |
+
logging.info(f"Rank {rank}: Using in-memory dataset from successful tokenization.")
|
555 |
+
dataset_for_trainer = dataset # Use the object directly
|
556 |
+
else:
|
557 |
+
# Should not happen
|
558 |
+
logging.error(f"Rank {rank}: Dataset path logic error. path_to_load='{path_to_load}', need_tokenization={need_tokenization}")
|
559 |
+
raise RuntimeError("Dataset preparation failed - logic error.")
|
560 |
+
|
561 |
+
# At this point, 'dataset' on all ranks should hold the ready-to-use data.
|
562 |
+
|
563 |
+
# Synchronize processes after dataset is ready on all ranks
|
564 |
+
if distributed_mode:
|
565 |
+
try:
|
566 |
+
logging.info(f"Rank {rank}: Synchronizing after dataset preparation...")
|
567 |
+
dist.barrier()
|
568 |
+
logging.info(f"Rank {rank}: Synchronization complete.")
|
569 |
+
except Exception as sync_e:
|
570 |
+
logging.error(f"Rank {rank}: Synchronization after dataset prep failed: {sync_e}")
|
571 |
+
raise
|
572 |
+
|
573 |
+
# --- Helper Function for Memory Check ---
|
574 |
+
def check_gpu_memory_utilization():
|
575 |
+
"""Check and report GPU memory utilization"""
|
576 |
+
if not torch.cuda.is_available():
|
577 |
+
logging.info("CUDA not available, skipping GPU memory check.")
|
578 |
+
return 0 # Return 0 utilization if no GPU
|
579 |
+
|
580 |
+
logging.info("==== GPU MEMORY UTILIZATION CHECK ====")
|
581 |
+
total_allocated_gb = 0
|
582 |
+
total_reserved_gb = 0
|
583 |
+
total_capacity_gb = 0
|
584 |
+
|
585 |
+
try:
|
586 |
+
for i in range(torch.cuda.device_count()):
|
587 |
+
free_mem, total_mem = torch.cuda.mem_get_info(i)
|
588 |
+
allocated = torch.cuda.memory_allocated(i)
|
589 |
+
reserved = torch.cuda.memory_reserved(i)
|
590 |
+
|
591 |
+
free_gb = free_mem / (1024**3)
|
592 |
+
total_gb = total_mem / (1024**3)
|
593 |
+
allocated_gb = allocated / (1024**3)
|
594 |
+
reserved_gb = reserved / (1024**3)
|
595 |
+
utilized_pct = (1 - free_mem/total_mem) * 100 if total_mem > 0 else 0
|
596 |
+
|
597 |
+
total_allocated_gb += allocated_gb
|
598 |
+
total_reserved_gb += reserved_gb
|
599 |
+
total_capacity_gb += total_gb
|
600 |
+
|
601 |
+
logging.info(f"GPU {i}: Allocated {allocated_gb:.1f}GB, Reserved {reserved_gb:.1f}GB, "
|
602 |
+
f"Free {free_gb:.1f}GB, Total {total_gb:.1f}GB, "
|
603 |
+
f"Utilization: {utilized_pct:.1f}%")
|
604 |
+
|
605 |
+
avg_utilization = (total_allocated_gb / total_capacity_gb) * 100 if total_capacity_gb > 0 else 0
|
606 |
+
logging.info(f"OVERALL: Using {total_allocated_gb:.1f}GB / {total_capacity_gb:.1f}GB ({avg_utilization:.1f}% allocated)")
|
607 |
+
logging.info("========================================")
|
608 |
+
return avg_utilization
|
609 |
+
except Exception as e:
|
610 |
+
logging.error(f"Error checking GPU memory: {e}")
|
611 |
+
return 0 # Return 0 on error
|
612 |
+
|
613 |
+
# --- Model Loading & Preparation (Runs on ALL ranks) ---
|
614 |
+
logging.info(f"Rank {rank}: Loading model: {MODEL_ID}...")
|
615 |
+
|
616 |
+
# 1. Load Model Configuration
|
617 |
+
config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True)
|
618 |
+
logging.info("Enabling YaRN scaling in model configuration.")
|
619 |
+
config.rope_scaling = {
|
620 |
+
"type": "yarn",
|
621 |
+
"factor": 4.0,
|
622 |
+
"original_max_position_embeddings": 32768,
|
623 |
+
}
|
624 |
+
|
625 |
+
# Determine torch dtype
|
626 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
627 |
+
|
628 |
+
# Set device_map based on distributed mode
|
629 |
+
# When using FSDP, device_map should typically be None or "auto", FSDP handles placement.
|
630 |
+
if USE_FSDP:
|
631 |
+
device_map = None
|
632 |
+
logging.info("FSDP enabled: Setting device_map=None")
|
633 |
+
elif distributed_mode:
|
634 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
635 |
+
device_map = {"": local_rank}
|
636 |
+
logging.info(f"Rank {rank}: DDP mode: Loading model on device {local_rank}")
|
637 |
+
else:
|
638 |
+
device_map = "auto"
|
639 |
+
logging.info("Rank {rank}: Single process mode: Using automatic device mapping")
|
640 |
+
|
641 |
+
# Configure Flash Attention and other optimizations
|
642 |
+
use_flash_attn = USE_FLASH_ATTN and FLASH_ATTN_AVAILABLE
|
643 |
+
attn_implementation = "flash_attention_2" if use_flash_attn else None
|
644 |
+
|
645 |
+
# Configure Quantization if enabled
|
646 |
+
# quantization_config = None
|
647 |
+
# if USE_4BIT_QUANTIZATION:
|
648 |
+
# logging.info("Configuring 4-bit quantization (QLoRA)...")
|
649 |
+
# compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)
|
650 |
+
# quantization_config = BitsAndBytesConfig(
|
651 |
+
# load_in_4bit=True,
|
652 |
+
# bnb_4bit_quant_type=BNB_4BIT_QUANT_TYPE,
|
653 |
+
# bnb_4bit_compute_dtype=compute_dtype,
|
654 |
+
# bnb_4bit_use_double_quant=True, # Qwen models often benefit from double quant
|
655 |
+
# )
|
656 |
+
# # Override torch_dtype when using quantization as recommended
|
657 |
+
# # torch_dtype = None
|
658 |
+
# logging.info(f"4-bit quantization config created: type={BNB_4BIT_QUANT_TYPE}, compute={BNB_4BIT_COMPUTE_DTYPE}")
|
659 |
+
|
660 |
+
# Configure model loading kwargs
|
661 |
+
model_load_kwargs = {
|
662 |
+
"config": config,
|
663 |
+
"device_map": device_map,
|
664 |
+
"low_cpu_mem_usage": True,
|
665 |
+
"trust_remote_code": True,
|
666 |
+
}
|
667 |
+
if use_flash_attn:
|
668 |
+
model_load_kwargs["attn_implementation"] = "flash_attention_2"
|
669 |
+
# if quantization_config:
|
670 |
+
# model_load_kwargs["quantization_config"] = quantization_config
|
671 |
+
# Always set torch_dtype when not using quantization
|
672 |
+
model_load_kwargs["torch_dtype"] = torch_dtype
|
673 |
+
|
674 |
+
# Log memory before loading
|
675 |
+
# ... (memory logging logic - keep as is) ...
|
676 |
+
|
677 |
+
# Load the model
|
678 |
+
model = None # Initialize model variable
|
679 |
+
try:
|
680 |
+
logging.info(f"Rank {rank}: Calling AutoModelForCausalLM.from_pretrained...")
|
681 |
+
model = AutoModelForCausalLM.from_pretrained(
|
682 |
+
MODEL_ID,
|
683 |
+
**model_load_kwargs
|
684 |
+
)
|
685 |
+
logging.info(f"Rank {rank}: Base model loaded successfully on device: {model.device if device_map is None else 'CPU/Multi'}")
|
686 |
+
|
687 |
+
# Ensure consistent dtype before FSDP wrapping (which happens in trainer.train)
|
688 |
+
if torch_dtype == torch.bfloat16:
|
689 |
+
logging.info("Explicitly casting model to bfloat16...")
|
690 |
+
model = model.to(torch.bfloat16)
|
691 |
+
|
692 |
+
# Apply Better Transformers optimization
|
693 |
+
use_better_transformers_flag = USE_BETTER_TRANSFORMERS and BETTER_TRANSFORMERS_AVAILABLE
|
694 |
+
if use_better_transformers_flag:
|
695 |
+
try:
|
696 |
+
logging.info("Applying BetterTransformer optimizations...")
|
697 |
+
model = BetterTransformer.transform(model)
|
698 |
+
logging.info("BetterTransformer optimizations applied successfully")
|
699 |
+
except Exception as bt_e:
|
700 |
+
logging.warning(f"Could not apply BetterTransformer optimizations: {str(bt_e)}")
|
701 |
+
|
702 |
+
# Apply activation checkpointing
|
703 |
+
if USE_ACTIVATION_CHECKPOINTING:
|
704 |
+
try:
|
705 |
+
logging.info("Enabling activation checkpointing...")
|
706 |
+
model.gradient_checkpointing_enable()
|
707 |
+
logging.info("Activation checkpointing enabled.")
|
708 |
+
except Exception as ac_e:
|
709 |
+
logging.warning(f"Could not enable activation checkpointing: {str(ac_e)}")
|
710 |
+
|
711 |
+
# Log model config and check memory utilization
|
712 |
+
logging.info(f"Rank {rank}: Model setup complete.")
|
713 |
+
check_gpu_memory_utilization() # This function needs to be defined or moved
|
714 |
+
|
715 |
+
except Exception as model_load_e: # Correct indentation for except
|
716 |
+
logging.error(f"Rank {rank}: Failed during model loading or preparation: {model_load_e}")
|
717 |
+
import traceback
|
718 |
+
logging.error(traceback.format_exc())
|
719 |
+
# Attempt to clean up distributed env before raising
|
720 |
+
if distributed_mode and dist.is_initialized():
|
721 |
+
try: dist.destroy_process_group()
|
722 |
+
except: pass
|
723 |
+
raise # Re-raise error
|
724 |
+
|
725 |
+
# --- LoRA Configuration ---
|
726 |
+
# ... (LoRA config - keep as is) ...
|
727 |
+
peft_config = LoraConfig(
|
728 |
+
r=LORA_R,
|
729 |
+
lora_alpha=LORA_ALPHA,
|
730 |
+
lora_dropout=LORA_DROPOUT,
|
731 |
+
target_modules=LORA_TARGET_MODULES,
|
732 |
+
bias="none",
|
733 |
+
task_type="CAUSAL_LM",
|
734 |
+
)
|
735 |
+
|
736 |
+
# --- Synchronize AFTER model loading & PEFT config ---
|
737 |
+
if distributed_mode:
|
738 |
+
try:
|
739 |
+
logging.info(f"Rank {rank}: Synchronizing after model loading...")
|
740 |
+
dist.barrier()
|
741 |
+
logging.info(f"Rank {rank}: Synchronization after model loading complete.")
|
742 |
+
except Exception as sync_e:
|
743 |
+
logging.error(f"Rank {rank}: Synchronization after model loading failed: {sync_e}")
|
744 |
+
raise
|
745 |
+
|
746 |
+
# --- Define Training Arguments ---
|
747 |
+
# (Determine determined_run_name logic here as before)
|
748 |
+
determined_run_name = None
|
749 |
+
if REPORT_TO_WANDB and is_main_process:
|
750 |
+
try:
|
751 |
+
import wandb
|
752 |
+
if wandb.run is not None: determined_run_name = wandb.run.name
|
753 |
+
except Exception: pass # Ignore errors here, handled by report_to
|
754 |
+
|
755 |
+
base_training_args = {
|
756 |
+
# ... (all base args, including max_seq_length) ...
|
757 |
+
"output_dir": OUTPUT_DIR,
|
758 |
+
"per_device_train_batch_size": PER_DEVICE_TRAIN_BATCH_SIZE,
|
759 |
+
"gradient_accumulation_steps": GRADIENT_ACCUMULATION_STEPS,
|
760 |
+
"optim": OPTIMIZER,
|
761 |
+
"save_steps": SAVE_STEPS,
|
762 |
+
"logging_steps": LOGGING_STEPS,
|
763 |
+
"learning_rate": LEARNING_RATE,
|
764 |
+
"num_train_epochs": EPOCHS,
|
765 |
+
"max_steps": -1,
|
766 |
+
"fp16": False,
|
767 |
+
"bf16": torch_dtype == torch.bfloat16, # Use previously determined dtype
|
768 |
+
"max_grad_norm": 0.3,
|
769 |
+
"warmup_ratio": WARMUP_RATIO,
|
770 |
+
"group_by_length": False, # Explicitly disable to prevent pre-computation hang
|
771 |
+
"lr_scheduler_type": LR_SCHEDULER_TYPE,
|
772 |
+
"report_to": report_to,
|
773 |
+
"save_total_limit": 3,
|
774 |
+
"logging_first_step": True,
|
775 |
+
**({"run_name": determined_run_name} if determined_run_name is not None else {}),
|
776 |
+
"fsdp": "full_shard" if USE_FSDP else "", # Pass FSDP strategy string (removed offload)
|
777 |
+
"fsdp_config": FSDP_CONFIG if USE_FSDP else {}, # Pass FSDP config dict
|
778 |
+
"dataloader_num_workers": DATALOADER_NUM_WORKERS,
|
779 |
+
"resume_from_checkpoint": "auto",
|
780 |
+
"save_strategy": "steps",
|
781 |
+
"load_best_model_at_end": False,
|
782 |
+
"metric_for_best_model": None,
|
783 |
+
"dataset_text_field": "text",
|
784 |
+
"packing": False,
|
785 |
+
"max_seq_length": MAX_SEQ_LENGTH,
|
786 |
+
# Memory/Performance Optimizations
|
787 |
+
"gradient_checkpointing_kwargs": {"use_reentrant": False}, # More stable checkpointing for FSDP activation checkpointing
|
788 |
+
"ddp_find_unused_parameters": False, # Should be False for FSDP
|
789 |
+
"tf32": True, # Enable TF32 for faster compute on compatible GPUs
|
790 |
+
}
|
791 |
+
training_arguments = SFTConfig(**base_training_args)
|
792 |
+
logging.info(f"Rank {rank}: Training arguments (SFTConfig) created.")
|
793 |
+
|
794 |
+
# --- Define Callbacks ---
|
795 |
+
|
796 |
+
# Create memory monitoring callback
|
797 |
+
class MemoryMonitorCallback(TrainerCallback):
|
798 |
+
def on_step_end(self, args, state, control, **kwargs):
|
799 |
+
if state.global_step % 10 == 0: # Log every 10 steps
|
800 |
+
if torch.cuda.is_available():
|
801 |
+
gc.collect()
|
802 |
+
torch.cuda.empty_cache()
|
803 |
+
rank = int(os.environ.get("RANK", 0))
|
804 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
805 |
+
try:
|
806 |
+
free_mem, total_mem = torch.cuda.mem_get_info(local_rank)
|
807 |
+
free_gb = free_mem / (1024**3)
|
808 |
+
used_gb = (total_mem - free_mem) / (1024**3)
|
809 |
+
total_gb = total_mem / (1024**3)
|
810 |
+
reserved = torch.cuda.memory_reserved(local_rank) / (1024**3)
|
811 |
+
allocated = torch.cuda.memory_allocated(local_rank) / (1024**3)
|
812 |
+
logging.info(f"Rank {rank}: Memory at step {state.global_step}: "
|
813 |
+
f"{free_gb:.1f}GB free, {used_gb:.1f}GB used, {total_gb:.1f}GB total, "
|
814 |
+
f"{reserved:.1f}GB reserved, {allocated:.1f}GB allocated")
|
815 |
+
except Exception as mem_e:
|
816 |
+
logging.warning(f"Rank {rank}: Could not get memory info: {mem_e}")
|
817 |
+
return control
|
818 |
+
|
819 |
+
memory_monitor = MemoryMonitorCallback()
|
820 |
+
|
821 |
+
# Create a special first step callback with WandB support
|
822 |
+
class FirstStepCallback(TrainerCallback):
|
823 |
+
def __init__(self):
|
824 |
+
self.first_step_start_time = None
|
825 |
+
self.progress_indicators = 0
|
826 |
+
self.update_interval = 60 # Check every minute
|
827 |
+
self.last_update_time = time.time()
|
828 |
+
|
829 |
+
def on_step_begin(self, args, state, control, **kwargs):
|
830 |
+
if state.global_step == 0:
|
831 |
+
self.first_step_start_time = time.time()
|
832 |
+
logging.info(f"FIRST STEP STARTING at {datetime.now().strftime('%H:%M:%S')}")
|
833 |
+
if REPORT_TO_WANDB and 'wandb' in sys.modules:
|
834 |
+
try:
|
835 |
+
import wandb # Import locally
|
836 |
+
if wandb.run:
|
837 |
+
wandb.log({"training_status": "first_step_started"})
|
838 |
+
except Exception as log_e: logging.warning(f"Wandb log error: {log_e}")
|
839 |
+
return control
|
840 |
+
|
841 |
+
def on_step_end(self, args, state, control, **kwargs):
|
842 |
+
if state.global_step == 0:
|
843 |
+
if self.first_step_start_time is None: # Should not happen, but safeguard
|
844 |
+
logging.warning("First step ended but start time was not recorded.")
|
845 |
+
return control
|
846 |
+
duration = time.time() - self.first_step_start_time
|
847 |
+
logging.info(f"FIRST STEP COMPLETED at {datetime.now().strftime('%H:%M:%S')} (took {duration:.2f} seconds)")
|
848 |
+
if REPORT_TO_WANDB and 'wandb' in sys.modules:
|
849 |
+
try:
|
850 |
+
import wandb # Import locally
|
851 |
+
if wandb.run:
|
852 |
+
wandb.log({
|
853 |
+
"training_status": "first_step_completed",
|
854 |
+
"first_step_duration": duration
|
855 |
+
})
|
856 |
+
except Exception as log_e: logging.warning(f"Wandb log error: {log_e}")
|
857 |
+
return control
|
858 |
+
|
859 |
+
def on_substep_end(self, args, state, control, **kwargs):
|
860 |
+
# This tracks progress within a step (during gradient accumulation)
|
861 |
+
current_time = time.time()
|
862 |
+
# Only report for the first step/substep and only from rank 0
|
863 |
+
if (self.first_step_start_time is not None and
|
864 |
+
state.global_step == 0 and
|
865 |
+
current_time - self.last_update_time >= self.update_interval and
|
866 |
+
(not distributed_mode or int(os.environ.get("LOCAL_RANK", 0)) == 0)):
|
867 |
+
self.progress_indicators += 1
|
868 |
+
elapsed = current_time - self.first_step_start_time
|
869 |
+
logging.info(f"First step still in progress... ({elapsed:.1f}s elapsed, progress indicator {self.progress_indicators})")
|
870 |
+
if REPORT_TO_WANDB and 'wandb' in sys.modules:
|
871 |
+
try:
|
872 |
+
import wandb # Import locally
|
873 |
+
if wandb.run:
|
874 |
+
wandb.log({
|
875 |
+
"training_status": "first_step_in_progress",
|
876 |
+
"first_step_elapsed": elapsed,
|
877 |
+
"progress_indicator": self.progress_indicators
|
878 |
+
})
|
879 |
+
except Exception as log_e: logging.warning(f"Wandb log error: {log_e}")
|
880 |
+
self.last_update_time = current_time
|
881 |
+
return control
|
882 |
+
|
883 |
+
first_step_callback = FirstStepCallback()
|
884 |
+
|
885 |
+
# Add WandB logging callback if WandB is enabled
|
886 |
+
wandb_callback = None # Initialize
|
887 |
+
if REPORT_TO_WANDB and 'wandb' in sys.modules and (not distributed_mode or int(os.environ.get("LOCAL_RANK", 0)) == 0):
|
888 |
+
try:
|
889 |
+
# **** FULL WandBLoggingCallback Class Definition ****
|
890 |
+
class WandBLoggingCallback(TrainerCallback):
|
891 |
+
"""Logs comprehensive training metrics and progress to Weights & Biases"""
|
892 |
+
|
893 |
+
def __init__(self):
|
894 |
+
self.training_start_time = None
|
895 |
+
self.last_log_time = None
|
896 |
+
self.total_steps = None
|
897 |
+
self.samples_seen = 0
|
898 |
+
self.tokens_seen = 0
|
899 |
+
self.current_epoch = 0
|
900 |
+
self.epoch_start_time = None
|
901 |
+
self.step_history = [] # For tracking steps/second
|
902 |
+
self.global_tokens_per_second = 0
|
903 |
+
self.progress_table = None # Initialize table to None
|
904 |
+
|
905 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
906 |
+
"""Log hyperparameters and initialize tracking at the start of training"""
|
907 |
+
if not (REPORT_TO_WANDB and 'wandb' in sys.modules): return # Check if WandB should be used
|
908 |
+
|
909 |
+
try:
|
910 |
+
import wandb # Import locally
|
911 |
+
if not wandb.run:
|
912 |
+
logging.warning("WandBCallback: Wandb not initialized in on_train_begin.")
|
913 |
+
return
|
914 |
+
except ImportError:
|
915 |
+
logging.warning("WandBCallback: wandb not imported, cannot log on_train_begin")
|
916 |
+
return
|
917 |
+
|
918 |
+
self.training_start_time = time.time()
|
919 |
+
self.epoch_start_time = time.time()
|
920 |
+
self.last_log_time = time.time()
|
921 |
+
|
922 |
+
# Calculate total expected steps
|
923 |
+
if args.max_steps > 0:
|
924 |
+
self.total_steps = args.max_steps
|
925 |
+
else:
|
926 |
+
# Use trainer passed in kwargs if available (prioritize 'trainer' key)
|
927 |
+
trainer_instance = kwargs.get('trainer', None)
|
928 |
+
if trainer_instance is None:
|
929 |
+
trainer_instance = kwargs.get('model', None) # Fallback to 'model' key
|
930 |
+
|
931 |
+
dataset_length = 0
|
932 |
+
if trainer_instance and hasattr(trainer_instance, 'train_dataset') and trainer_instance.train_dataset is not None:
|
933 |
+
try:
|
934 |
+
dataset_length = len(trainer_instance.train_dataset)
|
935 |
+
except Exception as len_e:
|
936 |
+
logging.warning(f"WandBCallback: Error getting dataset length: {len_e}")
|
937 |
+
else:
|
938 |
+
logging.warning("WandBCallback: Could not access train_dataset length during on_train_begin.")
|
939 |
+
|
940 |
+
batch_size = args.per_device_train_batch_size
|
941 |
+
accumulation = args.gradient_accumulation_steps
|
942 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
943 |
+
global_batch_denom = (batch_size * world_size * accumulation)
|
944 |
+
if dataset_length > 0 and global_batch_denom > 0:
|
945 |
+
self.total_steps = (dataset_length // global_batch_denom) * args.num_train_epochs
|
946 |
+
else:
|
947 |
+
self.total_steps = -1 # Indicate unknown total steps
|
948 |
+
|
949 |
+
# Log key hyperparameters
|
950 |
+
config = {
|
951 |
+
"model_name": MODEL_ID,
|
952 |
+
"lora_r": LORA_R,
|
953 |
+
"lora_alpha": LORA_ALPHA,
|
954 |
+
"batch_size": PER_DEVICE_TRAIN_BATCH_SIZE,
|
955 |
+
"grad_accum": GRADIENT_ACCUMULATION_STEPS,
|
956 |
+
"effective_batch": PER_DEVICE_TRAIN_BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS,
|
957 |
+
"global_batch": PER_DEVICE_TRAIN_BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS * world_size,
|
958 |
+
"learning_rate": LEARNING_RATE,
|
959 |
+
"seq_length": MAX_SEQ_LENGTH,
|
960 |
+
"epochs": EPOCHS,
|
961 |
+
"total_steps_estimated": self.total_steps,
|
962 |
+
"optimizer": OPTIMIZER,
|
963 |
+
"warmup_ratio": WARMUP_RATIO,
|
964 |
+
"scheduler": LR_SCHEDULER_TYPE,
|
965 |
+
}
|
966 |
+
wandb.config.update(config)
|
967 |
+
|
968 |
+
# Initialize training progress table
|
969 |
+
columns = ["step", "epoch", "loss", "lr", "tokens/sec", "eta", "elapsed_hrs"]
|
970 |
+
self.progress_table = wandb.Table(columns=columns)
|
971 |
+
|
972 |
+
# Log training start
|
973 |
+
wandb.log({"training_status": "started"})
|
974 |
+
logging.info(f"Training started - total estimated steps: {self.total_steps}")
|
975 |
+
|
976 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
977 |
+
"""Log detailed metrics and progress after each logging step"""
|
978 |
+
if not (REPORT_TO_WANDB and 'wandb' in sys.modules): return # Check if WandB should be used
|
979 |
+
|
980 |
+
try:
|
981 |
+
import wandb # Import locally
|
982 |
+
if not wandb.run:
|
983 |
+
logging.warning("WandBCallback: Wandb run not active during on_log.")
|
984 |
+
return
|
985 |
+
except ImportError:
|
986 |
+
logging.warning("WandBCallback: wandb not imported, cannot log on_log")
|
987 |
+
return
|
988 |
+
|
989 |
+
if not logs:
|
990 |
+
return
|
991 |
+
|
992 |
+
# Format metrics for logging
|
993 |
+
metrics = {}
|
994 |
+
for k, v in logs.items():
|
995 |
+
if isinstance(v, (int, float)):
|
996 |
+
metrics[k] = v
|
997 |
+
elif hasattr(v, "item"): # Handle tensors
|
998 |
+
try: metrics[k] = v.item()
|
999 |
+
except: pass
|
1000 |
+
|
1001 |
+
if not metrics:
|
1002 |
+
return
|
1003 |
+
|
1004 |
+
# Calculate time-based metrics
|
1005 |
+
current_time = time.time()
|
1006 |
+
if self.training_start_time is None: self.training_start_time = current_time # Safeguard
|
1007 |
+
elapsed_time = current_time - self.training_start_time
|
1008 |
+
elapsed_hrs = elapsed_time / 3600
|
1009 |
+
|
1010 |
+
# Estimate tokens processed
|
1011 |
+
batch_size = args.per_device_train_batch_size
|
1012 |
+
grad_accum = args.gradient_accumulation_steps
|
1013 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
1014 |
+
global_batch_size = batch_size * grad_accum * world_size
|
1015 |
+
tokens_per_step = global_batch_size * MAX_SEQ_LENGTH # Use MAX_SEQ_LENGTH from outer scope
|
1016 |
+
|
1017 |
+
# Update tokens seen
|
1018 |
+
steps_since_last = state.global_step - (self.step_history[-1][0] if self.step_history else -1)
|
1019 |
+
if steps_since_last <= 0: steps_since_last = 1 # Avoid issues on first log
|
1020 |
+
new_tokens = tokens_per_step * steps_since_last
|
1021 |
+
self.tokens_seen += new_tokens
|
1022 |
+
|
1023 |
+
# Calculate throughput
|
1024 |
+
time_since_last = current_time - (self.last_log_time if self.last_log_time else current_time)
|
1025 |
+
if time_since_last <= 0: time_since_last = 1.0 # Avoid division by zero
|
1026 |
+
tokens_per_second = new_tokens / time_since_last
|
1027 |
+
|
1028 |
+
# Update rolling average of tokens/sec
|
1029 |
+
alpha = 0.1
|
1030 |
+
self.global_tokens_per_second = alpha * tokens_per_second + (1 - alpha) * self.global_tokens_per_second
|
1031 |
+
|
1032 |
+
# Track epoch progress
|
1033 |
+
if "epoch" in metrics:
|
1034 |
+
new_epoch = int(metrics["epoch"])
|
1035 |
+
if new_epoch > self.current_epoch:
|
1036 |
+
epoch_time = current_time - (self.epoch_start_time if self.epoch_start_time else current_time)
|
1037 |
+
self.epoch_start_time = current_time
|
1038 |
+
self.current_epoch = new_epoch
|
1039 |
+
wandb.log({"epoch/duration_sec": epoch_time}, step=state.global_step)
|
1040 |
+
logging.info(f"Epoch {self.current_epoch-1} completed in {epoch_time:.2f} seconds")
|
1041 |
+
|
1042 |
+
epoch_float = metrics["epoch"]
|
1043 |
+
epoch_progress = epoch_float - int(epoch_float)
|
1044 |
+
metrics["epoch_progress"] = epoch_progress * 100
|
1045 |
+
|
1046 |
+
# Estimate time remaining
|
1047 |
+
eta_hours = float('nan')
|
1048 |
+
if self.total_steps and self.total_steps > 0 and state.global_step > 0:
|
1049 |
+
progress_fraction = state.global_step / self.total_steps
|
1050 |
+
if progress_fraction > 1e-6: # Avoid division by zero early on
|
1051 |
+
eta_seconds = elapsed_time / progress_fraction - elapsed_time
|
1052 |
+
eta_hours = eta_seconds / 3600
|
1053 |
+
metrics["eta_hours"] = eta_hours
|
1054 |
+
|
1055 |
+
# Add additional calculated metrics
|
1056 |
+
metrics.update({
|
1057 |
+
"progress/elapsed_hours": elapsed_hrs,
|
1058 |
+
"progress/tokens_total": self.tokens_seen,
|
1059 |
+
"performance/tokens_per_second": tokens_per_second,
|
1060 |
+
"performance/tokens_per_second_avg": self.global_tokens_per_second,
|
1061 |
+
"performance/global_batch_size": global_batch_size,
|
1062 |
+
})
|
1063 |
+
|
1064 |
+
# Add GPU utilization if available
|
1065 |
+
if torch.cuda.is_available():
|
1066 |
+
try:
|
1067 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
1068 |
+
# Note: torch.cuda.utilization might not be available/reliable
|
1069 |
+
# metrics["gpu/utilization"] = torch.cuda.utilization(local_rank)
|
1070 |
+
metrics["gpu/memory_allocated_gb"] = torch.cuda.memory_allocated(local_rank) / 1e9
|
1071 |
+
metrics["gpu/memory_reserved_gb"] = torch.cuda.memory_reserved(local_rank) / 1e9
|
1072 |
+
except Exception as gpu_e:
|
1073 |
+
logging.debug(f"Could not log GPU metrics: {gpu_e}")
|
1074 |
+
|
1075 |
+
# Log all metrics to wandb
|
1076 |
+
wandb.log(metrics, step=state.global_step)
|
1077 |
+
|
1078 |
+
# Add row to progress table
|
1079 |
+
if self.progress_table is not None:
|
1080 |
+
loss_val = metrics.get("loss", float("nan"))
|
1081 |
+
lr_val = metrics.get("learning_rate", float("nan"))
|
1082 |
+
epoch_val = metrics.get("epoch", 0)
|
1083 |
+
tokens_sec = metrics.get("performance/tokens_per_second_avg", 0)
|
1084 |
+
|
1085 |
+
self.progress_table.add_data(
|
1086 |
+
state.global_step,
|
1087 |
+
f"{epoch_val:.2f}",
|
1088 |
+
f"{loss_val:.4f}",
|
1089 |
+
f"{lr_val:.2e}",
|
1090 |
+
f"{tokens_sec:.1f}",
|
1091 |
+
f"{eta_hours:.1f} hrs",
|
1092 |
+
f"{elapsed_hrs:.1f} hrs"
|
1093 |
+
)
|
1094 |
+
# Log the updated progress table (might be verbose, consider less frequent logging)
|
1095 |
+
# wandb.log({"training_progress": self.progress_table}, step=state.global_step)
|
1096 |
+
|
1097 |
+
# Print concise metrics to console
|
1098 |
+
log_info = (
|
1099 |
+
f"Step {state.global_step}"
|
1100 |
+
+ (f"/{self.total_steps} ({100 * state.global_step / self.total_steps:.1f}%)" if self.total_steps and self.total_steps > 0 else "")
|
1101 |
+
+ f" | Loss: {loss_val:.4f} | LR: {lr_val:.2e} | Epoch: {epoch_val:.2f}"
|
1102 |
+
+ f" | Tokens/sec: {tokens_sec:.1f}"
|
1103 |
+
+ (f" | ETA: {eta_hours:.1f}h" if not math.isnan(eta_hours) else "")
|
1104 |
+
)
|
1105 |
+
logging.info(log_info)
|
1106 |
+
|
1107 |
+
# Update time tracking
|
1108 |
+
self.last_log_time = current_time
|
1109 |
+
self.step_history.append((state.global_step, current_time))
|
1110 |
+
if len(self.step_history) > 100: # Keep only recent history
|
1111 |
+
self.step_history = self.step_history[-100:]
|
1112 |
+
|
1113 |
+
def on_train_end(self, args, state, control, **kwargs):
|
1114 |
+
"""Log final statistics at the end of training"""
|
1115 |
+
if not (REPORT_TO_WANDB and 'wandb' in sys.modules): return # Check if WandB should be used
|
1116 |
+
|
1117 |
+
try:
|
1118 |
+
import wandb # Import locally
|
1119 |
+
if not wandb.run:
|
1120 |
+
logging.warning("WandBCallback: Wandb run not active during on_train_end.")
|
1121 |
+
return
|
1122 |
+
except ImportError:
|
1123 |
+
logging.warning("WandBCallback: wandb not imported, cannot log on_train_end")
|
1124 |
+
return
|
1125 |
+
|
1126 |
+
total_time = time.time() - (self.training_start_time if self.training_start_time else time.time())
|
1127 |
+
hours = total_time / 3600
|
1128 |
+
|
1129 |
+
final_stats = {
|
1130 |
+
"training_status": "completed",
|
1131 |
+
"total_steps_completed": state.global_step,
|
1132 |
+
"total_epochs_completed": self.current_epoch,
|
1133 |
+
"total_training_time_hours": hours,
|
1134 |
+
"total_tokens_processed": self.tokens_seen,
|
1135 |
+
"average_tokens_per_second": self.tokens_seen / total_time if total_time > 0 else 0
|
1136 |
+
}
|
1137 |
+
wandb.log(final_stats, step=state.global_step) # Log at final step
|
1138 |
+
|
1139 |
+
wandb.run.summary.update({
|
1140 |
+
"training_duration_hours": hours,
|
1141 |
+
"total_steps": state.global_step,
|
1142 |
+
"total_epochs": self.current_epoch,
|
1143 |
+
"total_tokens": self.tokens_seen
|
1144 |
+
})
|
1145 |
+
logging.info(f"Training complete - {hours:.2f} hours, {state.global_step} steps, {self.tokens_seen:,} tokens processed")
|
1146 |
+
# **** End of WandBLoggingCallback Definition ****
|
1147 |
+
|
1148 |
+
# Create callback instance
|
1149 |
+
wandb_callback = WandBLoggingCallback()
|
1150 |
+
logging.info("Enhanced WandB logging callback created")
|
1151 |
+
except Exception as e:
|
1152 |
+
logging.error(f"Error creating WandB callback: {str(e)}")
|
1153 |
+
wandb_callback = None
|
1154 |
+
|
1155 |
+
# Create the list of callbacks
|
1156 |
+
trainer_callbacks = [memory_monitor, first_step_callback] # Use the instance names
|
1157 |
+
if wandb_callback:
|
1158 |
+
trainer_callbacks.append(wandb_callback)
|
1159 |
+
logging.info("Added WandB callback to trainer")
|
1160 |
+
# trainer_callbacks = [] # Temporarily disable all callbacks
|
1161 |
+
|
1162 |
+
# --- Initialize Trainer ---
|
1163 |
+
logging.info(f"Rank {rank}: Initializing SFTTrainer...")
|
1164 |
+
|
1165 |
+
trainer = None
|
1166 |
+
try:
|
1167 |
+
trainer = SFTTrainer(
|
1168 |
+
model=model,
|
1169 |
+
# Using processing_class as per user confirmation
|
1170 |
+
processing_class=tokenizer,
|
1171 |
+
args=training_arguments,
|
1172 |
+
train_dataset=dataset_for_trainer,
|
1173 |
+
peft_config=peft_config,
|
1174 |
+
# Ensure this matches whether the collator is defined/needed
|
1175 |
+
preprocess_logits_for_metrics=None,
|
1176 |
+
callbacks=trainer_callbacks, # Pass the list here
|
1177 |
+
)
|
1178 |
+
logging.info(f"Rank {rank}: SFTTrainer initialized successfully.")
|
1179 |
+
except Exception as e:
|
1180 |
+
logging.error(f"Rank {rank}: Error initializing SFTTrainer: {e}")
|
1181 |
+
import traceback
|
1182 |
+
logging.error(traceback.format_exc())
|
1183 |
+
if distributed_mode and dist.is_initialized():
|
1184 |
+
try: dist.destroy_process_group()
|
1185 |
+
except: pass
|
1186 |
+
raise
|
1187 |
+
|
1188 |
+
# --- Train ---
|
1189 |
+
if trainer is not None:
|
1190 |
+
logging.info(f"Beginning trainer.train() call at {datetime.now().strftime('%H:%M:%S')}")
|
1191 |
+
try:
|
1192 |
+
trainer.train()
|
1193 |
+
logging.info(f"Training finished successfully at {datetime.now().strftime('%H:%M:%S')}")
|
1194 |
+
except Exception as e:
|
1195 |
+
logging.error(f"Exception during training: {e}")
|
1196 |
+
import traceback
|
1197 |
+
logging.error(traceback.format_exc())
|
1198 |
+
if distributed_mode and dist.is_initialized():
|
1199 |
+
try:
|
1200 |
+
dist.destroy_process_group()
|
1201 |
+
logging.info("Destroyed process group after training error")
|
1202 |
+
except:
|
1203 |
+
pass
|
1204 |
+
raise
|
1205 |
+
|
1206 |
+
# --- Merge Model and Save Full Model ---
|
1207 |
+
logging.info("Merging adapter weights into base model...")
|
1208 |
+
|
1209 |
+
# Clear some memory first if needed (especially if not using massive GPUs)
|
1210 |
+
# del model
|
1211 |
+
# del trainer
|
1212 |
+
# torch.cuda.empty_cache()
|
1213 |
+
|
1214 |
+
# Reload the base model (consider lower precision to save VRAM during merge)
|
1215 |
+
logging.info(f"Reloading base model ({MODEL_ID}) for merging...")
|
1216 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
1217 |
+
MODEL_ID,
|
1218 |
+
config=config, # Ensure YaRN config is used if applied during training
|
1219 |
+
torch_dtype=torch.bfloat16, # Or torch.float16, adjust as needed
|
1220 |
+
low_cpu_mem_usage=True, # Helps with large models
|
1221 |
+
trust_remote_code=True,
|
1222 |
+
device_map=None, # Load onto CPU first to potentially save GPU VRAM if needed
|
1223 |
+
attn_implementation="flash_attention_2"
|
1224 |
+
)
|
1225 |
+
|
1226 |
+
# Load the PEFT model with adapters
|
1227 |
+
logging.info(f"Loading PEFT model from {OUTPUT_DIR}...")
|
1228 |
+
merged_model = PeftModel.from_pretrained(
|
1229 |
+
base_model,
|
1230 |
+
OUTPUT_DIR,
|
1231 |
+
device_map=None, # Load onto CPU first
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
# Merge the adapter weights
|
1235 |
+
logging.info("Merging LoRA weights...")
|
1236 |
+
merged_model = merged_model.merge_and_unload()
|
1237 |
+
logging.info("LoRA weights merged.")
|
1238 |
+
|
1239 |
+
# Define path for the full model save
|
1240 |
+
full_model_save_path = os.path.join(OUTPUT_DIR, "final_merged_model")
|
1241 |
+
|
1242 |
+
# Save the merged model
|
1243 |
+
logging.info(f"Saving merged model to {full_model_save_path}...")
|
1244 |
+
merged_model.save_pretrained(full_model_save_path)
|
1245 |
+
logging.info("Merged model saved.")
|
1246 |
+
|
1247 |
+
# Save the tokenizer associated with the merged model
|
1248 |
+
logging.info(f"Saving tokenizer to {full_model_save_path}...")
|
1249 |
+
tokenizer.save_pretrained(full_model_save_path)
|
1250 |
+
logging.info("Tokenizer saved.")
|
1251 |
+
|
1252 |
+
logging.info(f"Fine-tuning and merging process complete. Full model saved to {full_model_save_path}")
|
1253 |
+
|
1254 |
+
# --- Notes on Inference and Resuming Training ---
|
1255 |
+
logging.info("Training Checkpoint Notes:")
|
1256 |
+
logging.info(f" • Checkpoints saved to: {OUTPUT_DIR}")
|
1257 |
+
logging.info(f" • To resume training from the latest checkpoint, just rerun this script")
|
1258 |
+
logging.info(f" (resume_from_checkpoint='auto' will automatically find the latest checkpoint)")
|
1259 |
+
logging.info(f" • To resume from a specific checkpoint, set resume_from_checkpoint='path/to/checkpoint'")
|
1260 |
+
|
1261 |
+
# --- Notes on Inference ---
|
1262 |
+
# To use the trained adapters:
|
1263 |
+
# from peft import PeftModel
|
1264 |
+
# base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID, ...)
|
1265 |
+
# model = PeftModel.from_pretrained(base_model, final_adapter_path)
|
1266 |
+
# model = model.merge_and_unload() # Optional: merge adapters for faster inference
|
1267 |
+
# Then use model and tokenizer for generation.
|
layer_influence.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Measure per-layer causal influence via gating and/or swapping.
|
4 |
+
# Mapping fix: correctly map composite layer indices to donor indices.
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
import math
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Dict, List, Optional, Tuple
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
|
16 |
+
def parse_layers(spec: str) -> List[int]:
|
17 |
+
out: List[int] = []
|
18 |
+
for chunk in spec.split(","):
|
19 |
+
chunk = chunk.strip()
|
20 |
+
if not chunk:
|
21 |
+
continue
|
22 |
+
if "-" in chunk:
|
23 |
+
a, b = chunk.split("-")
|
24 |
+
a, b = int(a), int(b)
|
25 |
+
out.extend(list(range(a, b + 1)))
|
26 |
+
else:
|
27 |
+
out.append(int(chunk))
|
28 |
+
out = sorted(list({x for x in out}))
|
29 |
+
return out
|
30 |
+
|
31 |
+
|
32 |
+
def load_lines(
|
33 |
+
prompts: Optional[str], prompts_file: Optional[str]
|
34 |
+
) -> List[str]:
|
35 |
+
lines: List[str] = []
|
36 |
+
if prompts_file:
|
37 |
+
with open(prompts_file, "r", encoding="utf-8") as f:
|
38 |
+
for line in f:
|
39 |
+
s = line.strip("\n")
|
40 |
+
if s:
|
41 |
+
lines.append(s)
|
42 |
+
if prompts:
|
43 |
+
for s in prompts.split("\n"):
|
44 |
+
s = s.strip()
|
45 |
+
if s:
|
46 |
+
lines.append(s)
|
47 |
+
if not lines:
|
48 |
+
lines = [
|
49 |
+
"You are a helpful assistant. Say hi in one sentence.",
|
50 |
+
"Explain transformers in 2-3 sentences.",
|
51 |
+
"Summarize the benefits of bfloat16 training.",
|
52 |
+
]
|
53 |
+
return lines
|
54 |
+
|
55 |
+
|
56 |
+
def get_embed_device(model: torch.nn.Module) -> torch.device:
|
57 |
+
return model.get_input_embeddings().weight.device
|
58 |
+
|
59 |
+
|
60 |
+
@torch.inference_mode()
|
61 |
+
def dataset_nll(
|
62 |
+
model: AutoModelForCausalLM,
|
63 |
+
tok: AutoTokenizer,
|
64 |
+
texts: List[str],
|
65 |
+
max_length: int = 512,
|
66 |
+
batch_size: int = 4,
|
67 |
+
input_device: Optional[torch.device] = None,
|
68 |
+
) -> Tuple[float, int]:
|
69 |
+
if input_device is None:
|
70 |
+
input_device = get_embed_device(model)
|
71 |
+
|
72 |
+
total_nll = 0.0
|
73 |
+
total_tokens = 0
|
74 |
+
|
75 |
+
i = 0
|
76 |
+
while i < len(texts):
|
77 |
+
batch = texts[i : i + batch_size]
|
78 |
+
i += batch_size
|
79 |
+
|
80 |
+
enc = tok(
|
81 |
+
batch,
|
82 |
+
return_tensors="pt",
|
83 |
+
padding=True,
|
84 |
+
truncation=True,
|
85 |
+
max_length=max_length,
|
86 |
+
)
|
87 |
+
for k in enc:
|
88 |
+
enc[k] = enc[k].to(input_device)
|
89 |
+
|
90 |
+
input_ids = enc["input_ids"]
|
91 |
+
attention_mask = enc["attention_mask"]
|
92 |
+
labels = input_ids.clone()
|
93 |
+
labels[labels == tok.pad_token_id] = -100
|
94 |
+
|
95 |
+
out = model(
|
96 |
+
input_ids=input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
labels=labels,
|
99 |
+
use_cache=False,
|
100 |
+
)
|
101 |
+
loss = out.loss
|
102 |
+
valid = labels.ne(-100)
|
103 |
+
n_tokens = int(valid.sum().item())
|
104 |
+
total_nll += float(loss.item()) * n_tokens
|
105 |
+
total_tokens += n_tokens
|
106 |
+
|
107 |
+
return total_nll, total_tokens
|
108 |
+
|
109 |
+
|
110 |
+
def ppl_from_nll(total_nll: float, total_tokens: int) -> float:
|
111 |
+
if total_tokens == 0:
|
112 |
+
return float("inf")
|
113 |
+
return float(math.exp(total_nll / total_tokens))
|
114 |
+
|
115 |
+
|
116 |
+
@dataclass
|
117 |
+
class GateSpec:
|
118 |
+
layer: int
|
119 |
+
attn_scale: float = 0.0
|
120 |
+
mlp_scale: float = 0.0
|
121 |
+
|
122 |
+
|
123 |
+
@contextmanager
|
124 |
+
def gate_layer(model: AutoModelForCausalLM, spec: GateSpec):
|
125 |
+
"""
|
126 |
+
Temporarily scale a layer's residual contribution by scaling:
|
127 |
+
- self_attn.o_proj.weight by attn_scale
|
128 |
+
- mlp.down_proj.weight by mlp_scale
|
129 |
+
Using 0.0 disables that sublayer's residual addition.
|
130 |
+
"""
|
131 |
+
backups: List[Tuple[torch.nn.Parameter, torch.Tensor]] = []
|
132 |
+
|
133 |
+
def scale_param(p: torch.nn.Parameter, s: float):
|
134 |
+
backups.append((p, p.data.detach().clone()))
|
135 |
+
p.data.mul_(s)
|
136 |
+
|
137 |
+
layer = model.model.layers[spec.layer] # type: ignore[attr-defined]
|
138 |
+
|
139 |
+
try:
|
140 |
+
if hasattr(layer.self_attn, "o_proj"):
|
141 |
+
scale_param(layer.self_attn.o_proj.weight, spec.attn_scale)
|
142 |
+
else:
|
143 |
+
raise AttributeError("No o_proj in self_attn")
|
144 |
+
|
145 |
+
if hasattr(layer.mlp, "down_proj"):
|
146 |
+
scale_param(layer.mlp.down_proj.weight, spec.mlp_scale)
|
147 |
+
else:
|
148 |
+
raise AttributeError("No down_proj in mlp")
|
149 |
+
|
150 |
+
yield
|
151 |
+
finally:
|
152 |
+
for p, old in backups:
|
153 |
+
p.data.copy_(old)
|
154 |
+
backups.clear()
|
155 |
+
|
156 |
+
|
157 |
+
@contextmanager
|
158 |
+
def swap_layer_from_donor(
|
159 |
+
model_dst: AutoModelForCausalLM,
|
160 |
+
model_src: AutoModelForCausalLM,
|
161 |
+
dst_layer_idx: int,
|
162 |
+
src_layer_idx: int,
|
163 |
+
):
|
164 |
+
"""
|
165 |
+
Temporarily copy all parameters/buffers for dst_layer_idx from
|
166 |
+
model_src's src_layer_idx, then restore.
|
167 |
+
"""
|
168 |
+
dst_prefix = f"model.layers.{dst_layer_idx}."
|
169 |
+
src_prefix = f"model.layers.{src_layer_idx}."
|
170 |
+
|
171 |
+
src_named_params = dict(model_src.named_parameters())
|
172 |
+
dst_named_params = dict(model_dst.named_parameters())
|
173 |
+
src_named_bufs = dict(model_src.named_buffers())
|
174 |
+
dst_named_bufs = dict(model_dst.named_buffers())
|
175 |
+
|
176 |
+
src_params_by_suffix: Dict[str, torch.Tensor] = {}
|
177 |
+
for name, p in src_named_params.items():
|
178 |
+
if name.startswith(src_prefix):
|
179 |
+
suffix = name[len(src_prefix) :]
|
180 |
+
src_params_by_suffix[suffix] = p
|
181 |
+
|
182 |
+
src_bufs_by_suffix: Dict[str, torch.Tensor] = {}
|
183 |
+
for name, b in src_named_bufs.items():
|
184 |
+
if name.startswith(src_prefix):
|
185 |
+
suffix = name[len(src_prefix) :]
|
186 |
+
src_bufs_by_suffix[suffix] = b
|
187 |
+
|
188 |
+
backups_p: List[Tuple[str, torch.Tensor]] = []
|
189 |
+
backups_b: List[Tuple[str, torch.Tensor]] = []
|
190 |
+
|
191 |
+
try:
|
192 |
+
with torch.no_grad():
|
193 |
+
for name, p_dst in list(dst_named_params.items()):
|
194 |
+
if not name.startswith(dst_prefix):
|
195 |
+
continue
|
196 |
+
suffix = name[len(dst_prefix) :]
|
197 |
+
if suffix not in src_params_by_suffix:
|
198 |
+
continue
|
199 |
+
p_src = src_params_by_suffix[suffix]
|
200 |
+
backups_p.append((name, p_dst.data.detach().clone()))
|
201 |
+
p_dst.data.copy_(
|
202 |
+
p_src.data.to(device=p_dst.device, dtype=p_dst.dtype)
|
203 |
+
)
|
204 |
+
for name, b_dst in list(dst_named_bufs.items()):
|
205 |
+
if not name.startswith(dst_prefix):
|
206 |
+
continue
|
207 |
+
suffix = name[len(dst_prefix) :]
|
208 |
+
if suffix not in src_bufs_by_suffix:
|
209 |
+
continue
|
210 |
+
b_src = src_bufs_by_suffix[suffix]
|
211 |
+
backups_b.append((name, b_dst.data.detach().clone()))
|
212 |
+
b_dst.data.copy_(
|
213 |
+
b_src.data.to(device=b_dst.device, dtype=b_dst.dtype)
|
214 |
+
)
|
215 |
+
yield
|
216 |
+
finally:
|
217 |
+
with torch.no_grad():
|
218 |
+
for name, old in backups_p:
|
219 |
+
p_dst = dst_named_params[name]
|
220 |
+
p_dst.data.copy_(old)
|
221 |
+
for name, old in backups_b:
|
222 |
+
b_dst = dst_named_bufs[name]
|
223 |
+
b_dst.data.copy_(old)
|
224 |
+
|
225 |
+
|
226 |
+
def map_layer_idx(
|
227 |
+
dst_idx: int, dst_total: int, src_total: int, mode: str = "ratio"
|
228 |
+
) -> int:
|
229 |
+
"""
|
230 |
+
Map a composite (dst) layer index to donor (src) layer index.
|
231 |
+
|
232 |
+
- ratio (default): floor(dst_idx * src_total / dst_total)
|
233 |
+
- wrap: dst_idx % src_total
|
234 |
+
"""
|
235 |
+
if src_total <= 0:
|
236 |
+
raise ValueError("src_total must be > 0")
|
237 |
+
if mode == "wrap":
|
238 |
+
return dst_idx % src_total
|
239 |
+
x = int(math.floor(dst_idx * src_total / max(1, dst_total)))
|
240 |
+
return max(0, min(src_total - 1, x))
|
241 |
+
|
242 |
+
|
243 |
+
def main():
|
244 |
+
ap = argparse.ArgumentParser(
|
245 |
+
description="Per-layer influence via gating and/or swapping."
|
246 |
+
)
|
247 |
+
ap.add_argument("--model", type=str, required=True)
|
248 |
+
ap.add_argument("--donor_model", type=str)
|
249 |
+
ap.add_argument("--layers", type=str, required=True)
|
250 |
+
ap.add_argument("--prompts", type=str)
|
251 |
+
ap.add_argument("--prompts_file", type=str)
|
252 |
+
ap.add_argument("--max_length", type=int, default=512)
|
253 |
+
ap.add_argument("--batch_size", type=int, default=4)
|
254 |
+
ap.add_argument(
|
255 |
+
"--dtype",
|
256 |
+
type=str,
|
257 |
+
default="bfloat16",
|
258 |
+
choices=["bfloat16", "float16", "float32"],
|
259 |
+
)
|
260 |
+
ap.add_argument("--device_map", type=str, default="auto")
|
261 |
+
ap.add_argument("--gate_scan", action="store_true")
|
262 |
+
ap.add_argument("--swap_scan", action="store_true")
|
263 |
+
ap.add_argument("--attn_only", action="store_true")
|
264 |
+
ap.add_argument("--mlp_only", action="store_true")
|
265 |
+
ap.add_argument(
|
266 |
+
"--swap_map", type=str, default="ratio", choices=["ratio", "wrap"]
|
267 |
+
)
|
268 |
+
args = ap.parse_args()
|
269 |
+
|
270 |
+
dtype_map = {
|
271 |
+
"bfloat16": torch.bfloat16,
|
272 |
+
"float16": torch.float16,
|
273 |
+
"float32": torch.float32,
|
274 |
+
}
|
275 |
+
torch_dtype = dtype_map[args.dtype]
|
276 |
+
|
277 |
+
layers = parse_layers(args.layers)
|
278 |
+
texts = load_lines(args.prompts, args.prompts_file)
|
279 |
+
|
280 |
+
print(f"Loading model: {args.model}")
|
281 |
+
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
282 |
+
model = AutoModelForCausalLM.from_pretrained(
|
283 |
+
args.model,
|
284 |
+
torch_dtype=torch_dtype,
|
285 |
+
trust_remote_code=True,
|
286 |
+
device_map=args.device_map,
|
287 |
+
).eval()
|
288 |
+
|
289 |
+
final_layers = int(
|
290 |
+
getattr(model.config, "num_hidden_layers", len(model.model.layers))
|
291 |
+
)
|
292 |
+
print(f"Composite num_hidden_layers: {final_layers}")
|
293 |
+
|
294 |
+
print("Computing baseline NLL/PPL...")
|
295 |
+
base_nll, base_tokens = dataset_nll(
|
296 |
+
model,
|
297 |
+
tok,
|
298 |
+
texts,
|
299 |
+
max_length=args.max_length,
|
300 |
+
batch_size=args.batch_size,
|
301 |
+
input_device=get_embed_device(model),
|
302 |
+
)
|
303 |
+
base_ppl = ppl_from_nll(base_nll, base_tokens)
|
304 |
+
print(f"Baseline: tokens={base_tokens} NLL={base_nll:.3f} PPL={base_ppl:.3f}")
|
305 |
+
|
306 |
+
if args.gate_scan:
|
307 |
+
print("\n== Gate scan (disable residual contribution per layer) ==")
|
308 |
+
a_scale = 0.0 if not args.mlp_only else 1.0
|
309 |
+
m_scale = 0.0 if not args.attn_only else 1.0
|
310 |
+
|
311 |
+
results: List[Tuple[int, float, float]] = []
|
312 |
+
for L in layers:
|
313 |
+
spec = GateSpec(layer=L, attn_scale=a_scale, mlp_scale=m_scale)
|
314 |
+
with gate_layer(model, spec):
|
315 |
+
nll, ntok = dataset_nll(
|
316 |
+
model,
|
317 |
+
tok,
|
318 |
+
texts,
|
319 |
+
max_length=args.max_length,
|
320 |
+
batch_size=args.batch_size,
|
321 |
+
input_device=get_embed_device(model),
|
322 |
+
)
|
323 |
+
ppl = ppl_from_nll(nll, ntok)
|
324 |
+
delta_nll = nll - base_nll
|
325 |
+
delta_ppl = ppl - base_ppl
|
326 |
+
results.append((L, delta_nll, delta_ppl))
|
327 |
+
print(
|
328 |
+
f"Layer {L:>3}: ΔNLL={delta_nll:+.3f} ΔPPL={delta_ppl:+.3f} "
|
329 |
+
f"(NLL={nll:.3f}, PPL={ppl:.3f})"
|
330 |
+
)
|
331 |
+
|
332 |
+
if args.swap_scan:
|
333 |
+
if not args.donor_model:
|
334 |
+
raise ValueError("--swap_scan requires --donor_model.")
|
335 |
+
print(f"\nLoading donor model: {args.donor_model}")
|
336 |
+
donor = AutoModelForCausalLM.from_pretrained(
|
337 |
+
args.donor_model,
|
338 |
+
torch_dtype=torch_dtype,
|
339 |
+
trust_remote_code=True,
|
340 |
+
device_map="cpu",
|
341 |
+
).eval()
|
342 |
+
donor_layers = int(
|
343 |
+
getattr(donor.config, "num_hidden_layers", len(donor.model.layers))
|
344 |
+
)
|
345 |
+
print(
|
346 |
+
f"Donor num_hidden_layers: {donor_layers} "
|
347 |
+
f"(mapping mode: {args.swap_map})"
|
348 |
+
)
|
349 |
+
|
350 |
+
print("\n== Swap scan (replace composite layer with donor-mapped) ==")
|
351 |
+
results_s: List[Tuple[int, int, float, float]] = []
|
352 |
+
for L in layers:
|
353 |
+
src_L = map_layer_idx(L, final_layers, donor_layers, mode=args.swap_map)
|
354 |
+
with swap_layer_from_donor(model, donor, L, src_L):
|
355 |
+
nll, ntok = dataset_nll(
|
356 |
+
model,
|
357 |
+
tok,
|
358 |
+
texts,
|
359 |
+
max_length=args.max_length,
|
360 |
+
batch_size=args.batch_size,
|
361 |
+
input_device=get_embed_device(model),
|
362 |
+
)
|
363 |
+
ppl = ppl_from_nll(nll, ntok)
|
364 |
+
delta_nll = nll - base_nll
|
365 |
+
delta_ppl = ppl - base_ppl
|
366 |
+
results_s.append((L, src_L, delta_nll, delta_ppl))
|
367 |
+
print(
|
368 |
+
f"Layer {L:>3} <- donor {src_L:>2}: "
|
369 |
+
f"ΔNLL={delta_nll:+.3f} ΔPPL={delta_ppl:+.3f} "
|
370 |
+
f"(NLL={nll:.3f}, PPL={ppl:.3f})"
|
371 |
+
)
|
372 |
+
|
373 |
+
|
374 |
+
if __name__ == "__main__":
|
375 |
+
main()
|
layer_surgery.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Layer surgery on safetensors shards:
|
4 |
+
# - Replace selected transformer blocks with donor blocks
|
5 |
+
# - Optionally rescale specific projections per layer
|
6 |
+
#
|
7 |
+
# Example:
|
8 |
+
# python layer_surgery.py \
|
9 |
+
# --composite ./qwen3-8b-plus-moe-64L \
|
10 |
+
# --base Qwen/Qwen3-8B \
|
11 |
+
# --out ./qwen3-8b-plus-moe-64L-surgery \
|
12 |
+
# --replace_layers 61 \
|
13 |
+
# --map ratio
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import glob
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import shutil
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Dict, List, Optional, Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from safetensors import safe_open
|
26 |
+
from safetensors.torch import save_file
|
27 |
+
from huggingface_hub import snapshot_download
|
28 |
+
|
29 |
+
|
30 |
+
def read_json(p: str) -> Dict:
|
31 |
+
with open(p, "r") as f:
|
32 |
+
return json.load(f)
|
33 |
+
|
34 |
+
|
35 |
+
def write_json(p: Path, data: Dict):
|
36 |
+
with open(p, "w") as f:
|
37 |
+
json.dump(data, f, indent=2)
|
38 |
+
|
39 |
+
|
40 |
+
def ensure_local(model_or_path: str) -> str:
|
41 |
+
if os.path.isdir(model_or_path):
|
42 |
+
return model_or_path
|
43 |
+
print(f"Downloading {model_or_path} ...")
|
44 |
+
return snapshot_download(
|
45 |
+
model_or_path, cache_dir="./model_cache", resume_download=True
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def index_dir(model_dir: str) -> Tuple[Dict[str, str], List[str]]:
|
50 |
+
idx_path = os.path.join(model_dir, "model.safetensors.index.json")
|
51 |
+
weight_map: Dict[str, str] = {}
|
52 |
+
files: List[str] = []
|
53 |
+
if os.path.exists(idx_path):
|
54 |
+
idx = read_json(idx_path)
|
55 |
+
weight_map = idx.get("weight_map", {})
|
56 |
+
files = sorted(list({os.path.join(model_dir, f) for f in weight_map.values()}))
|
57 |
+
return weight_map, files
|
58 |
+
|
59 |
+
st_files = glob.glob(os.path.join(model_dir, "*.safetensors"))
|
60 |
+
if not st_files:
|
61 |
+
raise FileNotFoundError(f"No .safetensors found in {model_dir}")
|
62 |
+
for fpath in st_files:
|
63 |
+
with safe_open(fpath, framework="pt") as f:
|
64 |
+
for k in f.keys():
|
65 |
+
weight_map[k] = os.path.basename(fpath)
|
66 |
+
files = sorted(st_files)
|
67 |
+
return weight_map, files
|
68 |
+
|
69 |
+
|
70 |
+
def parse_layers(spec: str) -> List[int]:
|
71 |
+
out: List[int] = []
|
72 |
+
for chunk in spec.split(","):
|
73 |
+
chunk = chunk.strip()
|
74 |
+
if not chunk:
|
75 |
+
continue
|
76 |
+
if "-" in chunk:
|
77 |
+
a, b = chunk.split("-")
|
78 |
+
a, b = int(a), int(b)
|
79 |
+
out.extend(list(range(a, b + 1)))
|
80 |
+
else:
|
81 |
+
out.append(int(chunk))
|
82 |
+
return sorted(list({x for x in out}))
|
83 |
+
|
84 |
+
|
85 |
+
def layer_prefix(li: int) -> str:
|
86 |
+
return f"model.layers.{li}."
|
87 |
+
|
88 |
+
|
89 |
+
def map_layer(dst_idx: int, dst_total: int, src_total: int, mode: str) -> int:
|
90 |
+
if src_total <= 0:
|
91 |
+
raise ValueError("src_total must be > 0")
|
92 |
+
if mode == "wrap":
|
93 |
+
return dst_idx % src_total
|
94 |
+
x = int(math.floor(dst_idx * src_total / max(1, dst_total)))
|
95 |
+
return max(0, min(src_total - 1, x))
|
96 |
+
|
97 |
+
|
98 |
+
def build_explicit_map(pairs: Optional[str]) -> Dict[int, int]:
|
99 |
+
m: Dict[int, int] = {}
|
100 |
+
if not pairs:
|
101 |
+
return m
|
102 |
+
for token in pairs.split(","):
|
103 |
+
token = token.strip()
|
104 |
+
if not token:
|
105 |
+
continue
|
106 |
+
a, b = token.split(":")
|
107 |
+
m[int(a)] = int(b)
|
108 |
+
return m
|
109 |
+
|
110 |
+
|
111 |
+
SCALE_KEYS = {
|
112 |
+
"attn_q": ".self_attn.q_proj.weight",
|
113 |
+
"attn_k": ".self_attn.k_proj.weight",
|
114 |
+
"attn_v": ".self_attn.v_proj.weight",
|
115 |
+
"attn_o": ".self_attn.o_proj.weight",
|
116 |
+
"mlp_up": ".mlp.up_proj.weight",
|
117 |
+
"mlp_gate": ".mlp.gate_proj.weight",
|
118 |
+
"mlp_down": ".mlp.down_proj.weight",
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
def load_scales(scale_json: Optional[str]) -> Dict[int, Dict[str, float]]:
|
123 |
+
if not scale_json:
|
124 |
+
return {}
|
125 |
+
data = read_json(scale_json)
|
126 |
+
out: Dict[int, Dict[str, float]] = {}
|
127 |
+
for k, v in data.items():
|
128 |
+
li = int(k)
|
129 |
+
out[li] = {}
|
130 |
+
for mk, sf in v.items():
|
131 |
+
if mk not in SCALE_KEYS:
|
132 |
+
raise ValueError(f"Unknown scale key '{mk}'. Valid: {list(SCALE_KEYS)}")
|
133 |
+
out[li][mk] = float(sf)
|
134 |
+
return out
|
135 |
+
|
136 |
+
|
137 |
+
def tensor_layer_idx(tensor_name: str) -> Optional[int]:
|
138 |
+
parts = tensor_name.split(".")
|
139 |
+
if len(parts) > 3 and parts[0] == "model" and parts[1] == "layers":
|
140 |
+
try:
|
141 |
+
return int(parts[2])
|
142 |
+
except Exception:
|
143 |
+
return None
|
144 |
+
return None
|
145 |
+
|
146 |
+
|
147 |
+
def apply_scales_if_needed(
|
148 |
+
tname: str, tensor: torch.Tensor, li: int, scales: Dict[int, Dict[str, float]]
|
149 |
+
) -> torch.Tensor:
|
150 |
+
if li not in scales:
|
151 |
+
return tensor
|
152 |
+
spec = scales[li]
|
153 |
+
for key, suffix in SCALE_KEYS.items():
|
154 |
+
if key in spec and tname.endswith(suffix):
|
155 |
+
s = spec[key]
|
156 |
+
return (tensor * tensor.new_tensor(s)).contiguous()
|
157 |
+
return tensor
|
158 |
+
|
159 |
+
|
160 |
+
def main():
|
161 |
+
ap = argparse.ArgumentParser(
|
162 |
+
description="Layer surgery on safetensors: replace and/or rescale layers."
|
163 |
+
)
|
164 |
+
ap.add_argument("--composite", type=str, required=True)
|
165 |
+
ap.add_argument("--base", type=str, help="Donor model dir or HF ID")
|
166 |
+
ap.add_argument("--out", type=str, required=True)
|
167 |
+
ap.add_argument("--replace_layers", type=str, help='e.g. "61" or "48-55,60,62"')
|
168 |
+
ap.add_argument(
|
169 |
+
"--map", type=str, default="ratio", choices=["ratio", "wrap"]
|
170 |
+
)
|
171 |
+
ap.add_argument("--map_pairs", type=str, help='e.g. "61:34,55:30"')
|
172 |
+
ap.add_argument("--scale_json", type=str)
|
173 |
+
args = ap.parse_args()
|
174 |
+
|
175 |
+
comp_dir = ensure_local(args.composite)
|
176 |
+
out_dir = Path(args.out)
|
177 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
178 |
+
|
179 |
+
comp_cfg = read_json(os.path.join(comp_dir, "config.json"))
|
180 |
+
L_comp = int(comp_cfg.get("num_hidden_layers"))
|
181 |
+
print(f"Composite layers: {L_comp}")
|
182 |
+
|
183 |
+
replace_set: List[int] = []
|
184 |
+
if args.replace_layers:
|
185 |
+
replace_set = parse_layers(args.replace_layers)
|
186 |
+
if not args.base:
|
187 |
+
raise ValueError("--base is required when --replace_layers is set.")
|
188 |
+
base_dir = ensure_local(args.base)
|
189 |
+
base_cfg = read_json(os.path.join(base_dir, "config.json"))
|
190 |
+
L_base = int(base_cfg.get("num_hidden_layers"))
|
191 |
+
print(f"Donor layers: {L_base}")
|
192 |
+
explicit = build_explicit_map(args.map_pairs)
|
193 |
+
else:
|
194 |
+
base_dir = ""
|
195 |
+
L_base = 0
|
196 |
+
explicit = {}
|
197 |
+
|
198 |
+
comp_map, comp_files = index_dir(comp_dir)
|
199 |
+
if replace_set:
|
200 |
+
base_map, base_files = index_dir(base_dir)
|
201 |
+
else:
|
202 |
+
base_map, base_files = {}, []
|
203 |
+
|
204 |
+
scales = load_scales(args.scale_json)
|
205 |
+
if scales:
|
206 |
+
print("Scales loaded for layers:", sorted(scales.keys()))
|
207 |
+
|
208 |
+
to_copy = [
|
209 |
+
"config.json",
|
210 |
+
"tokenizer.json",
|
211 |
+
"tokenizer_config.json",
|
212 |
+
"special_tokens_map.json",
|
213 |
+
"vocab.json",
|
214 |
+
"merges.txt",
|
215 |
+
"tokenizer.model",
|
216 |
+
"generation_config.json",
|
217 |
+
]
|
218 |
+
for fname in to_copy:
|
219 |
+
src = os.path.join(comp_dir, fname)
|
220 |
+
if os.path.exists(src):
|
221 |
+
shutil.copy2(src, out_dir / fname)
|
222 |
+
|
223 |
+
print("Performing surgery shard-by-shard...")
|
224 |
+
out_weight_map: Dict[str, str] = {}
|
225 |
+
for comp_f in comp_files:
|
226 |
+
rel = os.path.basename(comp_f)
|
227 |
+
out_f = out_dir / rel
|
228 |
+
new_tensors: Dict[str, torch.Tensor] = {}
|
229 |
+
|
230 |
+
with safe_open(comp_f, framework="pt") as fcomp:
|
231 |
+
keys = list(fcomp.keys())
|
232 |
+
for k in keys:
|
233 |
+
li = tensor_layer_idx(k)
|
234 |
+
tensor = None
|
235 |
+
|
236 |
+
if li is not None and li in replace_set:
|
237 |
+
if li in explicit:
|
238 |
+
src_li = explicit[li]
|
239 |
+
else:
|
240 |
+
src_li = map_layer(li, L_comp, L_base, args.map)
|
241 |
+
src_prefix = layer_prefix(src_li)
|
242 |
+
dst_prefix = layer_prefix(li)
|
243 |
+
donor_k = src_prefix + k[len(dst_prefix) :]
|
244 |
+
|
245 |
+
donor_file = base_map.get(donor_k)
|
246 |
+
if donor_file is None:
|
247 |
+
raise KeyError(f"Donor tensor not found: {donor_k}")
|
248 |
+
donor_path = os.path.join(base_dir, donor_file)
|
249 |
+
with safe_open(donor_path, framework="pt") as fbase:
|
250 |
+
tensor = fbase.get_tensor(donor_k)
|
251 |
+
else:
|
252 |
+
tensor = fcomp.get_tensor(k)
|
253 |
+
|
254 |
+
if li is not None:
|
255 |
+
tensor = apply_scales_if_needed(k, tensor, li, scales)
|
256 |
+
|
257 |
+
if not tensor.is_contiguous():
|
258 |
+
tensor = tensor.contiguous()
|
259 |
+
new_tensors[k] = tensor
|
260 |
+
out_weight_map[k] = rel
|
261 |
+
|
262 |
+
save_file(new_tensors, str(out_f))
|
263 |
+
|
264 |
+
total_size = 0
|
265 |
+
for fname in set(out_weight_map.values()):
|
266 |
+
fp = out_dir / fname
|
267 |
+
if fp.exists():
|
268 |
+
total_size += fp.stat().st_size
|
269 |
+
index = {"metadata": {"total_size": total_size, "format": "safetensors"}, "weight_map": out_weight_map}
|
270 |
+
write_json(out_dir / "model.safetensors.index.json", index)
|
271 |
+
print(f"Done. Wrote modified shards and index to: {out_dir}")
|
272 |
+
|
273 |
+
print("\nTip: validate load quickly (meta device):")
|
274 |
+
print(f" from transformers import AutoModelForCausalLM")
|
275 |
+
print(f" AutoModelForCausalLM.from_pretrained('{str(out_dir)}', device_map='meta', trust_remote_code=True)")
|
276 |
+
|
277 |
+
|
278 |
+
if __name__ == "__main__":
|
279 |
+
main()
|
moe_to_dense.py
ADDED
@@ -0,0 +1,1097 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Convert Qwen3 MoE model to dense format with target model compatibility,
|
4 |
+
then optionally build a larger composite model by interleaving layers
|
5 |
+
with a base dense model (e.g., Qwen3-8B).
|
6 |
+
|
7 |
+
Usage (MoE -> dense):
|
8 |
+
python moe_to_dense.py \
|
9 |
+
--model_id Qwen/Qwen3-235B-A22B-Instruct-2507 \
|
10 |
+
--target_model Qwen/Qwen3-8B \
|
11 |
+
--output_path ./qwen3-235b-dense-avg \
|
12 |
+
--method average \
|
13 |
+
--low_memory
|
14 |
+
|
15 |
+
Usage (build larger composite by interleaving):
|
16 |
+
python moe_to_dense.py \
|
17 |
+
--compose_interleaved \
|
18 |
+
--base_model Qwen/Qwen3-8B \
|
19 |
+
--moe_converted ./qwen3-235b-dense-avg \
|
20 |
+
--composite_output_path ./qwen3-8b-plus-moe-64L \
|
21 |
+
--final_layers 64 \
|
22 |
+
--interleave_strategy even \
|
23 |
+
--cast_dtype bfloat16
|
24 |
+
|
25 |
+
Validate load (meta device, no allocations):
|
26 |
+
python moe_to_dense.py \
|
27 |
+
--validate_model ./qwen3-8b-plus-moe-64L
|
28 |
+
"""
|
29 |
+
|
30 |
+
import os
|
31 |
+
import json
|
32 |
+
import torch
|
33 |
+
import argparse
|
34 |
+
from pathlib import Path
|
35 |
+
from typing import Dict, Any, Optional, List, Tuple
|
36 |
+
from tqdm import tqdm
|
37 |
+
import logging
|
38 |
+
from safetensors import safe_open
|
39 |
+
from safetensors.torch import save_file
|
40 |
+
import glob
|
41 |
+
from huggingface_hub import snapshot_download
|
42 |
+
import shutil
|
43 |
+
import gc
|
44 |
+
import math
|
45 |
+
|
46 |
+
logging.basicConfig(level=logging.INFO)
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
def read_json(path: str) -> Dict[str, Any]:
|
51 |
+
with open(path, "r") as f:
|
52 |
+
return json.load(f)
|
53 |
+
|
54 |
+
|
55 |
+
def write_json(path: Path, data: Dict[str, Any]):
|
56 |
+
with open(path, "w") as f:
|
57 |
+
json.dump(data, f, indent=2)
|
58 |
+
|
59 |
+
|
60 |
+
def cast_tensor_dtype(t: torch.Tensor, cast: Optional[str]) -> torch.Tensor:
|
61 |
+
if cast is None:
|
62 |
+
return t
|
63 |
+
target = {
|
64 |
+
"float32": torch.float32,
|
65 |
+
"fp32": torch.float32,
|
66 |
+
"float16": torch.float16,
|
67 |
+
"fp16": torch.float16,
|
68 |
+
"bfloat16": torch.bfloat16,
|
69 |
+
"bf16": torch.bfloat16,
|
70 |
+
}[cast.lower()]
|
71 |
+
if t.dtype == target:
|
72 |
+
return t
|
73 |
+
return t.to(dtype=target)
|
74 |
+
|
75 |
+
|
76 |
+
class MoEToDenseConverter:
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
model_path: str,
|
80 |
+
target_model_path: str,
|
81 |
+
output_path: str,
|
82 |
+
method: str = "average",
|
83 |
+
low_memory: bool = False,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Initialize the converter with target model compatibility.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
model_path: Path to MoE model or HuggingFace model ID
|
90 |
+
target_model_path: Path to target dense model for dimension matching
|
91 |
+
output_path: Where to save the converted dense model
|
92 |
+
method: How to handle experts:
|
93 |
+
- "concat_experts": Concatenate experts per projection
|
94 |
+
- "average": Average experts per projection (recommended)
|
95 |
+
- "first": Use first expert
|
96 |
+
low_memory: Process per-shard with minimal RAM
|
97 |
+
"""
|
98 |
+
self.model_path = model_path
|
99 |
+
self.target_model_path = target_model_path
|
100 |
+
self.output_path = Path(output_path)
|
101 |
+
self.method = method
|
102 |
+
self.low_memory = low_memory
|
103 |
+
self.output_path.mkdir(parents=True, exist_ok=True)
|
104 |
+
|
105 |
+
# Will be set in load_config
|
106 |
+
self.source_config: Optional[Dict[str, Any]] = None
|
107 |
+
|
108 |
+
# Load target model config for dimension matching
|
109 |
+
self.target_config = self.load_target_config()
|
110 |
+
|
111 |
+
def load_target_config(self) -> Dict[str, Any]:
|
112 |
+
if not os.path.exists(self.target_model_path):
|
113 |
+
logger.info(f"Downloading target model {self.target_model_path}...")
|
114 |
+
self.target_model_path = snapshot_download(
|
115 |
+
self.target_model_path,
|
116 |
+
cache_dir="./model_cache",
|
117 |
+
allow_patterns=["config.json"],
|
118 |
+
)
|
119 |
+
|
120 |
+
config_path = os.path.join(self.target_model_path, "config.json")
|
121 |
+
config = read_json(config_path)
|
122 |
+
|
123 |
+
logger.info("Target model dimensions:")
|
124 |
+
logger.info(f" hidden_size: {config.get('hidden_size')}")
|
125 |
+
logger.info(f" intermediate_size: {config.get('intermediate_size')}")
|
126 |
+
logger.info(
|
127 |
+
f" num_attention_heads: {config.get('num_attention_heads')}"
|
128 |
+
)
|
129 |
+
logger.info(
|
130 |
+
f" num_key_value_heads: {config.get('num_key_value_heads')}"
|
131 |
+
)
|
132 |
+
|
133 |
+
return config
|
134 |
+
|
135 |
+
def download_model_if_needed(self):
|
136 |
+
if not os.path.exists(self.model_path):
|
137 |
+
logger.info(
|
138 |
+
f"Downloading model {self.model_path} from HuggingFace..."
|
139 |
+
)
|
140 |
+
self.model_path = snapshot_download(
|
141 |
+
self.model_path,
|
142 |
+
cache_dir="./model_cache",
|
143 |
+
resume_download=True,
|
144 |
+
)
|
145 |
+
return self.model_path
|
146 |
+
|
147 |
+
def load_config(self) -> Dict[str, Any]:
|
148 |
+
config_path = os.path.join(self.model_path, "config.json")
|
149 |
+
source_cfg = read_json(config_path)
|
150 |
+
self.source_config = dict(source_cfg)
|
151 |
+
|
152 |
+
logger.info(
|
153 |
+
f"Source MoE architecture: "
|
154 |
+
f"{source_cfg.get('architectures', ['Unknown'])}"
|
155 |
+
)
|
156 |
+
logger.info(f" num_experts: {source_cfg.get('num_experts')}")
|
157 |
+
logger.info(
|
158 |
+
f" moe_intermediate_size: "
|
159 |
+
f"{source_cfg.get('moe_intermediate_size')}"
|
160 |
+
)
|
161 |
+
|
162 |
+
cfg = dict(source_cfg)
|
163 |
+
if "Qwen3MoeForCausalLM" in cfg.get("architectures", []):
|
164 |
+
cfg["architectures"] = ["Qwen3ForCausalLM"]
|
165 |
+
|
166 |
+
cfg["hidden_size"] = self.target_config["hidden_size"]
|
167 |
+
cfg["intermediate_size"] = self.target_config["intermediate_size"]
|
168 |
+
cfg["num_attention_heads"] = self.target_config["num_attention_heads"]
|
169 |
+
cfg["num_key_value_heads"] = self.target_config["num_key_value_heads"]
|
170 |
+
|
171 |
+
moe_params = [
|
172 |
+
"num_experts",
|
173 |
+
"num_experts_per_tok",
|
174 |
+
"moe_intermediate_size",
|
175 |
+
"decoder_sparse_step",
|
176 |
+
"norm_topk_prob",
|
177 |
+
"output_router_logits",
|
178 |
+
"router_aux_loss_coef",
|
179 |
+
"mlp_only_layers",
|
180 |
+
]
|
181 |
+
for param in moe_params:
|
182 |
+
if param in cfg:
|
183 |
+
del cfg[param]
|
184 |
+
|
185 |
+
if cfg.get("model_type") == "qwen3_moe":
|
186 |
+
cfg["model_type"] = "qwen3"
|
187 |
+
|
188 |
+
return cfg
|
189 |
+
|
190 |
+
@staticmethod
|
191 |
+
def _pad_trunc_rows(t: torch.Tensor, rows: int) -> torch.Tensor:
|
192 |
+
if t.shape[0] == rows:
|
193 |
+
return t
|
194 |
+
if t.shape[0] > rows:
|
195 |
+
return t[:rows, :].contiguous()
|
196 |
+
pad = torch.zeros(
|
197 |
+
rows - t.shape[0], t.shape[1], dtype=t.dtype, device=t.device
|
198 |
+
)
|
199 |
+
return torch.cat([t, pad], dim=0).contiguous()
|
200 |
+
|
201 |
+
@staticmethod
|
202 |
+
def _pad_trunc_cols(t: torch.Tensor, cols: int) -> torch.Tensor:
|
203 |
+
if t.shape[1] == cols:
|
204 |
+
return t
|
205 |
+
if t.shape[1] > cols:
|
206 |
+
return t[:, :cols].contiguous()
|
207 |
+
pad = torch.zeros(
|
208 |
+
t.shape[0], cols - t.shape[1], dtype=t.dtype, device=t.device
|
209 |
+
)
|
210 |
+
return torch.cat([t, pad], dim=1).contiguous()
|
211 |
+
|
212 |
+
def convert_attention_layers(
|
213 |
+
self, tensors: Dict[str, torch.Tensor], layer_idx: int
|
214 |
+
) -> Dict[str, torch.Tensor]:
|
215 |
+
"""
|
216 |
+
Convert attention layers to match target dimensions with proper GQA
|
217 |
+
head remapping.
|
218 |
+
|
219 |
+
Linear weights are [out_features, in_features]:
|
220 |
+
- q_proj: out = num_attention_heads * head_dim (= hidden_size)
|
221 |
+
- k_proj: out = num_key_value_heads * head_dim
|
222 |
+
- v_proj: out = num_key_value_heads * head_dim
|
223 |
+
- o_proj: in = num_attention_heads * head_dim (= hidden_size)
|
224 |
+
"""
|
225 |
+
if self.source_config is None:
|
226 |
+
raise RuntimeError(
|
227 |
+
"source_config not set. load_config must be called first."
|
228 |
+
)
|
229 |
+
|
230 |
+
converted: Dict[str, torch.Tensor] = {}
|
231 |
+
|
232 |
+
tgt_hidden = int(self.target_config["hidden_size"])
|
233 |
+
tgt_heads = int(self.target_config["num_attention_heads"])
|
234 |
+
tgt_kv_heads = int(self.target_config["num_key_value_heads"])
|
235 |
+
if tgt_heads == 0 or tgt_hidden % tgt_heads != 0:
|
236 |
+
raise ValueError(
|
237 |
+
f"Invalid target heads/hidden: hidden={tgt_hidden}, "
|
238 |
+
f"heads={tgt_heads}"
|
239 |
+
)
|
240 |
+
tgt_head_dim = tgt_hidden // tgt_heads
|
241 |
+
|
242 |
+
src_heads = int(
|
243 |
+
self.source_config.get("num_attention_heads", tgt_heads)
|
244 |
+
)
|
245 |
+
src_kv_heads = int(
|
246 |
+
self.source_config.get("num_key_value_heads", tgt_kv_heads)
|
247 |
+
)
|
248 |
+
|
249 |
+
def remap_heads(
|
250 |
+
W: torch.Tensor,
|
251 |
+
src_n: int,
|
252 |
+
tgt_n: int,
|
253 |
+
src_hd: int,
|
254 |
+
tgt_hd: int,
|
255 |
+
) -> torch.Tensor:
|
256 |
+
# W: [src_n * src_hd, in]
|
257 |
+
W3 = W.view(src_n, src_hd, W.shape[1])
|
258 |
+
if src_hd != tgt_hd:
|
259 |
+
if src_hd > tgt_hd:
|
260 |
+
W3 = W3[:, :tgt_hd, :].contiguous()
|
261 |
+
else:
|
262 |
+
pad = torch.zeros(
|
263 |
+
src_n,
|
264 |
+
tgt_hd - src_hd,
|
265 |
+
W.shape[1],
|
266 |
+
dtype=W.dtype,
|
267 |
+
device=W.device,
|
268 |
+
)
|
269 |
+
W3 = torch.cat([W3, pad], dim=1).contiguous()
|
270 |
+
if src_n == tgt_n:
|
271 |
+
Wm = W3
|
272 |
+
elif src_n > tgt_n:
|
273 |
+
if src_n % tgt_n != 0:
|
274 |
+
Wm = W3[:tgt_n, :, :].contiguous()
|
275 |
+
else:
|
276 |
+
g = src_n // tgt_n
|
277 |
+
Wm = (
|
278 |
+
W3.view(tgt_n, g, tgt_hd, W.shape[1])
|
279 |
+
.mean(dim=1)
|
280 |
+
.contiguous()
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
r = tgt_n // max(1, src_n)
|
284 |
+
if r * src_n == tgt_n:
|
285 |
+
Wm = W3.repeat_interleave(r, dim=0).contiguous()
|
286 |
+
else:
|
287 |
+
reps = math.ceil(tgt_n / src_n)
|
288 |
+
Wm = (
|
289 |
+
W3.repeat((reps, 1, 1))[:tgt_n, :, :].contiguous()
|
290 |
+
)
|
291 |
+
W2 = Wm.view(tgt_n * tgt_hd, W.shape[1])
|
292 |
+
return W2
|
293 |
+
|
294 |
+
for key, tensor in tensors.items():
|
295 |
+
if "self_attn" not in key:
|
296 |
+
continue
|
297 |
+
|
298 |
+
if "q_proj" in key:
|
299 |
+
out_src = tensor.shape[0]
|
300 |
+
src_hd = out_src // max(1, src_heads)
|
301 |
+
if src_hd * src_heads != out_src:
|
302 |
+
src_hd = tgt_head_dim
|
303 |
+
W = remap_heads(tensor, src_heads, tgt_heads, src_hd, tgt_head_dim)
|
304 |
+
W = self._pad_trunc_cols(W, tgt_hidden)
|
305 |
+
converted[key] = W
|
306 |
+
|
307 |
+
elif "k_proj" in key or "v_proj" in key:
|
308 |
+
out_src = tensor.shape[0]
|
309 |
+
src_hd = out_src // max(1, src_kv_heads)
|
310 |
+
if src_hd * src_kv_heads != out_src:
|
311 |
+
src_hd = tgt_head_dim
|
312 |
+
W = remap_heads(
|
313 |
+
tensor, src_kv_heads, tgt_kv_heads, src_hd, tgt_head_dim
|
314 |
+
)
|
315 |
+
W = self._pad_trunc_cols(W, tgt_hidden)
|
316 |
+
converted[key] = W
|
317 |
+
|
318 |
+
elif "o_proj" in key:
|
319 |
+
W = self._pad_trunc_cols(tensor, tgt_hidden)
|
320 |
+
W = self._pad_trunc_rows(W, tgt_hidden)
|
321 |
+
converted[key] = W
|
322 |
+
|
323 |
+
return converted
|
324 |
+
|
325 |
+
def convert_moe_layer_to_dense(
|
326 |
+
self, layer_tensors: Dict[str, torch.Tensor], layer_idx: int
|
327 |
+
) -> Dict[str, torch.Tensor]:
|
328 |
+
"""
|
329 |
+
Convert MoE FFN experts to a single dense FFN matching target dims.
|
330 |
+
|
331 |
+
Orientation:
|
332 |
+
- up_proj, gate_proj -> [intermediate, hidden] (concat along rows)
|
333 |
+
- down_proj -> [hidden, intermediate] (concat along cols)
|
334 |
+
"""
|
335 |
+
dense_tensors: Dict[str, torch.Tensor] = {}
|
336 |
+
expert_tensors = {"up_proj": [], "down_proj": [], "gate_proj": []}
|
337 |
+
|
338 |
+
for key, tensor in layer_tensors.items():
|
339 |
+
if "experts" in key:
|
340 |
+
if "up_proj" in key:
|
341 |
+
expert_tensors["up_proj"].append(tensor)
|
342 |
+
elif "down_proj" in key:
|
343 |
+
expert_tensors["down_proj"].append(tensor)
|
344 |
+
elif "gate_proj" in key:
|
345 |
+
expert_tensors["gate_proj"].append(tensor)
|
346 |
+
elif "router" not in key and "mlp" not in key:
|
347 |
+
dense_tensors[key] = tensor
|
348 |
+
|
349 |
+
attention_tensors = self.convert_attention_layers(
|
350 |
+
{k: v for k, v in layer_tensors.items() if "self_attn" in k},
|
351 |
+
layer_idx,
|
352 |
+
)
|
353 |
+
dense_tensors.update(attention_tensors)
|
354 |
+
|
355 |
+
target_intermediate = int(self.target_config["intermediate_size"])
|
356 |
+
target_hidden = int(self.target_config["hidden_size"])
|
357 |
+
|
358 |
+
def infer_per_expert_ffn() -> int:
|
359 |
+
src = (
|
360 |
+
expert_tensors["up_proj"]
|
361 |
+
or expert_tensors["gate_proj"]
|
362 |
+
or expert_tensors["down_proj"]
|
363 |
+
)
|
364 |
+
if not src:
|
365 |
+
return 1536
|
366 |
+
s = src[0].shape
|
367 |
+
if s[0] == target_hidden:
|
368 |
+
return int(s[1])
|
369 |
+
if s[1] == target_hidden:
|
370 |
+
return int(s[0])
|
371 |
+
return int(min(s[0], s[1]))
|
372 |
+
|
373 |
+
per_expert_ffn = infer_per_expert_ffn()
|
374 |
+
logger.info(f" per_expert_ffn inferred as {per_expert_ffn}")
|
375 |
+
|
376 |
+
def to_up_gate_shape(W: torch.Tensor) -> torch.Tensor:
|
377 |
+
if W.shape == (target_hidden, per_expert_ffn):
|
378 |
+
return W.t().contiguous()
|
379 |
+
if W.shape == (per_expert_ffn, target_hidden):
|
380 |
+
return W.contiguous()
|
381 |
+
return W.t().contiguous()
|
382 |
+
|
383 |
+
def to_down_shape(W: torch.Tensor) -> torch.Tensor:
|
384 |
+
if W.shape == (per_expert_ffn, target_hidden):
|
385 |
+
return W.t().contiguous()
|
386 |
+
if W.shape == (target_hidden, per_expert_ffn):
|
387 |
+
return W.contiguous()
|
388 |
+
return W.t().contiguous()
|
389 |
+
|
390 |
+
if self.method == "concat_experts":
|
391 |
+
num_experts_needed = math.ceil(
|
392 |
+
target_intermediate / per_expert_ffn
|
393 |
+
)
|
394 |
+
for proj_type in ["up_proj", "gate_proj"]:
|
395 |
+
if expert_tensors[proj_type]:
|
396 |
+
selected = expert_tensors[proj_type][:num_experts_needed]
|
397 |
+
while len(selected) < num_experts_needed:
|
398 |
+
selected.append(
|
399 |
+
expert_tensors[proj_type][
|
400 |
+
len(selected)
|
401 |
+
% len(expert_tensors[proj_type])
|
402 |
+
]
|
403 |
+
)
|
404 |
+
blocks = [to_up_gate_shape(W) for W in selected]
|
405 |
+
W_cat = torch.cat(blocks, dim=0)
|
406 |
+
W_cat = W_cat[:target_intermediate, :].contiguous()
|
407 |
+
dense_key = (
|
408 |
+
f"model.layers.{layer_idx}.mlp.{proj_type}.weight"
|
409 |
+
)
|
410 |
+
dense_tensors[dense_key] = W_cat
|
411 |
+
|
412 |
+
if expert_tensors["down_proj"]:
|
413 |
+
selected = expert_tensors["down_proj"][:num_experts_needed]
|
414 |
+
while len(selected) < num_experts_needed:
|
415 |
+
selected.append(
|
416 |
+
expert_tensors["down_proj"][
|
417 |
+
len(selected)
|
418 |
+
% len(expert_tensors["down_proj"])
|
419 |
+
]
|
420 |
+
)
|
421 |
+
blocks = [to_down_shape(W) for W in selected]
|
422 |
+
W_cat = torch.cat(blocks, dim=1)
|
423 |
+
W_cat = W_cat[:, :target_intermediate].contiguous()
|
424 |
+
dense_key = (
|
425 |
+
f"model.layers.{layer_idx}.mlp.down_proj.weight"
|
426 |
+
)
|
427 |
+
dense_tensors[dense_key] = W_cat
|
428 |
+
|
429 |
+
elif self.method == "average":
|
430 |
+
for proj_type in ["up_proj", "gate_proj"]:
|
431 |
+
if expert_tensors[proj_type]:
|
432 |
+
stack = torch.stack(
|
433 |
+
[to_up_gate_shape(e) for e in expert_tensors[proj_type]]
|
434 |
+
)
|
435 |
+
W = torch.mean(stack, dim=0)
|
436 |
+
if W.shape[0] < target_intermediate:
|
437 |
+
pad = torch.zeros(
|
438 |
+
target_intermediate - W.shape[0],
|
439 |
+
W.shape[1],
|
440 |
+
dtype=W.dtype,
|
441 |
+
)
|
442 |
+
W = torch.cat([W, pad], dim=0).contiguous()
|
443 |
+
else:
|
444 |
+
W = W[:target_intermediate, :].contiguous()
|
445 |
+
dense_key = (
|
446 |
+
f"model.layers.{layer_idx}.mlp.{proj_type}.weight"
|
447 |
+
)
|
448 |
+
dense_tensors[dense_key] = W
|
449 |
+
|
450 |
+
if expert_tensors["down_proj"]:
|
451 |
+
stack = torch.stack(
|
452 |
+
[to_down_shape(e) for e in expert_tensors["down_proj"]]
|
453 |
+
)
|
454 |
+
W = torch.mean(stack, dim=0)
|
455 |
+
if W.shape[1] < target_intermediate:
|
456 |
+
pad = torch.zeros(
|
457 |
+
W.shape[0],
|
458 |
+
target_intermediate - W.shape[1],
|
459 |
+
dtype=W.dtype,
|
460 |
+
)
|
461 |
+
W = torch.cat([W, pad], dim=1).contiguous()
|
462 |
+
else:
|
463 |
+
W = W[:, :target_intermediate].contiguous()
|
464 |
+
dense_key = (
|
465 |
+
f"model.layers.{layer_idx}.mlp.down_proj.weight"
|
466 |
+
)
|
467 |
+
dense_tensors[dense_key] = W
|
468 |
+
|
469 |
+
elif self.method == "first":
|
470 |
+
for proj_type in ["up_proj", "gate_proj"]:
|
471 |
+
if expert_tensors[proj_type]:
|
472 |
+
W = to_up_gate_shape(expert_tensors[proj_type][0])
|
473 |
+
if W.shape[0] < target_intermediate:
|
474 |
+
pad = torch.zeros(
|
475 |
+
target_intermediate - W.shape[0],
|
476 |
+
W.shape[1],
|
477 |
+
dtype=W.dtype,
|
478 |
+
)
|
479 |
+
W = torch.cat([W, pad], dim=0).contiguous()
|
480 |
+
else:
|
481 |
+
W = W[:target_intermediate, :].contiguous()
|
482 |
+
dense_key = (
|
483 |
+
f"model.layers.{layer_idx}.mlp.{proj_type}.weight"
|
484 |
+
)
|
485 |
+
dense_tensors[dense_key] = W
|
486 |
+
|
487 |
+
if expert_tensors["down_proj"]:
|
488 |
+
W = to_down_shape(expert_tensors["down_proj"][0])
|
489 |
+
if W.shape[1] < target_intermediate:
|
490 |
+
pad = torch.zeros(
|
491 |
+
W.shape[0],
|
492 |
+
target_intermediate - W.shape[1],
|
493 |
+
dtype=W.dtype,
|
494 |
+
)
|
495 |
+
W = torch.cat([W, pad], dim=1).contiguous()
|
496 |
+
else:
|
497 |
+
W = W[:, :target_intermediate].contiguous()
|
498 |
+
dense_key = (
|
499 |
+
f"model.layers.{layer_idx}.mlp.down_proj.weight"
|
500 |
+
)
|
501 |
+
dense_tensors[dense_key] = W
|
502 |
+
|
503 |
+
return dense_tensors
|
504 |
+
|
505 |
+
def convert_safetensors_file(
|
506 |
+
self, input_file: str, output_file: str
|
507 |
+
) -> Tuple[List[str], str]:
|
508 |
+
logger.info(f"Converting {os.path.basename(input_file)}...")
|
509 |
+
|
510 |
+
tensors_by_layer: Dict[int, Dict[str, torch.Tensor]] = {}
|
511 |
+
other_tensors: Dict[str, torch.Tensor] = {}
|
512 |
+
|
513 |
+
with safe_open(input_file, framework="pt") as f:
|
514 |
+
for key in f.keys():
|
515 |
+
tensor = f.get_tensor(key)
|
516 |
+
if "model.layers." in key:
|
517 |
+
parts = key.split(".")
|
518 |
+
layer_idx = int(parts[2])
|
519 |
+
if layer_idx not in tensors_by_layer:
|
520 |
+
tensors_by_layer[layer_idx] = {}
|
521 |
+
tensors_by_layer[layer_idx][key] = tensor
|
522 |
+
else:
|
523 |
+
other_tensors[key] = tensor
|
524 |
+
|
525 |
+
converted_tensors: Dict[str, torch.Tensor] = {}
|
526 |
+
for layer_idx in sorted(tensors_by_layer.keys()):
|
527 |
+
logger.info(f"Processing layer {layer_idx}")
|
528 |
+
layer_tensors = tensors_by_layer[layer_idx]
|
529 |
+
has_experts = any("experts" in key for key in layer_tensors.keys())
|
530 |
+
|
531 |
+
if has_experts:
|
532 |
+
dense_layer = self.convert_moe_layer_to_dense(
|
533 |
+
layer_tensors, layer_idx
|
534 |
+
)
|
535 |
+
converted_tensors.update(dense_layer)
|
536 |
+
else:
|
537 |
+
attention_tensors = self.convert_attention_layers(
|
538 |
+
{
|
539 |
+
k: v
|
540 |
+
for k, v in layer_tensors.items()
|
541 |
+
if "self_attn" in k
|
542 |
+
},
|
543 |
+
layer_idx,
|
544 |
+
)
|
545 |
+
converted_tensors.update(attention_tensors)
|
546 |
+
for key, tensor in layer_tensors.items():
|
547 |
+
if "router" not in key and "self_attn" not in key:
|
548 |
+
converted_tensors[key] = tensor
|
549 |
+
|
550 |
+
converted_tensors.update(other_tensors)
|
551 |
+
|
552 |
+
for key in converted_tensors:
|
553 |
+
if not converted_tensors[key].is_contiguous():
|
554 |
+
converted_tensors[key] = converted_tensors[key].contiguous()
|
555 |
+
|
556 |
+
save_file(converted_tensors, output_file)
|
557 |
+
logger.info(f"Saved to {os.path.basename(output_file)}")
|
558 |
+
return list(converted_tensors.keys()), output_file
|
559 |
+
|
560 |
+
def convert(self):
|
561 |
+
self.model_path = self.download_model_if_needed()
|
562 |
+
logger.info("Converting configuration...")
|
563 |
+
config = self.load_config()
|
564 |
+
|
565 |
+
config_output = self.output_path / "config.json"
|
566 |
+
write_json(config_output, config)
|
567 |
+
logger.info(f"Saved config to {config_output}")
|
568 |
+
|
569 |
+
logger.info("Copying tokenizer files...")
|
570 |
+
tokenizer_files = [
|
571 |
+
"tokenizer.json",
|
572 |
+
"tokenizer_config.json",
|
573 |
+
"special_tokens_map.json",
|
574 |
+
"vocab.json",
|
575 |
+
"merges.txt",
|
576 |
+
"tokenizer.model",
|
577 |
+
"generation_config.json",
|
578 |
+
]
|
579 |
+
for file in tokenizer_files:
|
580 |
+
src = os.path.join(self.model_path, file)
|
581 |
+
if os.path.exists(src):
|
582 |
+
dst = self.output_path / file
|
583 |
+
shutil.copy2(src, dst)
|
584 |
+
logger.info(f" Copied {file}")
|
585 |
+
|
586 |
+
weight_files = glob.glob(os.path.join(self.model_path, "*.safetensors"))
|
587 |
+
if not weight_files:
|
588 |
+
weight_files = glob.glob(
|
589 |
+
os.path.join(self.model_path, "model*.safetensors")
|
590 |
+
)
|
591 |
+
if not weight_files:
|
592 |
+
raise FileNotFoundError(
|
593 |
+
f"No safetensors files found in {self.model_path}"
|
594 |
+
)
|
595 |
+
|
596 |
+
weight_files.sort()
|
597 |
+
logger.info(f"Found {len(weight_files)} weight files to convert")
|
598 |
+
|
599 |
+
tensor_map: Dict[str, str] = {}
|
600 |
+
total_tensors = 0
|
601 |
+
|
602 |
+
for i, weight_file in enumerate(weight_files, 1):
|
603 |
+
output_filename = (
|
604 |
+
f"model-{i:05d}-of-{len(weight_files):05d}.safetensors"
|
605 |
+
)
|
606 |
+
output_file = self.output_path / output_filename
|
607 |
+
tensor_names, _ = self.convert_safetensors_file(
|
608 |
+
weight_file, str(output_file)
|
609 |
+
)
|
610 |
+
|
611 |
+
for tensor_name in tensor_names:
|
612 |
+
tensor_map[tensor_name] = output_filename
|
613 |
+
|
614 |
+
total_tensors += len(tensor_names)
|
615 |
+
logger.info(f"Progress: {i}/{len(weight_files)} files converted")
|
616 |
+
|
617 |
+
if self.low_memory:
|
618 |
+
gc.collect()
|
619 |
+
|
620 |
+
self.create_model_index(tensor_map)
|
621 |
+
|
622 |
+
logger.info("Conversion complete")
|
623 |
+
logger.info(f" Total tensors converted: {total_tensors}")
|
624 |
+
logger.info(f" Output saved to: {self.output_path}")
|
625 |
+
return self.output_path
|
626 |
+
|
627 |
+
def create_model_index(self, tensor_map: Dict[str, str]):
|
628 |
+
total_size = 0
|
629 |
+
for filename in set(tensor_map.values()):
|
630 |
+
file_path = self.output_path / filename
|
631 |
+
if file_path.exists():
|
632 |
+
total_size += file_path.stat().st_size
|
633 |
+
|
634 |
+
index = {
|
635 |
+
"metadata": {"total_size": total_size, "format": "safetensors"},
|
636 |
+
"weight_map": tensor_map,
|
637 |
+
}
|
638 |
+
|
639 |
+
index_path = self.output_path / "model.safetensors.index.json"
|
640 |
+
write_json(index_path, index)
|
641 |
+
logger.info(
|
642 |
+
f"Created index file with {len(tensor_map)} tensor mappings"
|
643 |
+
)
|
644 |
+
|
645 |
+
|
646 |
+
def index_safetensors_dir(
|
647 |
+
model_dir: str,
|
648 |
+
) -> Tuple[Dict[str, str], List[str]]:
|
649 |
+
model_dir = str(model_dir)
|
650 |
+
index_path = os.path.join(model_dir, "model.safetensors.index.json")
|
651 |
+
weight_map: Dict[str, str] = {}
|
652 |
+
files: List[str] = []
|
653 |
+
|
654 |
+
if os.path.exists(index_path):
|
655 |
+
idx = read_json(index_path)
|
656 |
+
weight_map = idx.get("weight_map", {})
|
657 |
+
files = sorted(
|
658 |
+
list({os.path.join(model_dir, f) for f in weight_map.values()})
|
659 |
+
)
|
660 |
+
return weight_map, files
|
661 |
+
|
662 |
+
st_files = glob.glob(os.path.join(model_dir, "*.safetensors"))
|
663 |
+
if not st_files:
|
664 |
+
raise FileNotFoundError(
|
665 |
+
f"No safetensors files found in {model_dir}"
|
666 |
+
)
|
667 |
+
|
668 |
+
for fpath in st_files:
|
669 |
+
with safe_open(fpath, framework="pt") as f:
|
670 |
+
for key in f.keys():
|
671 |
+
weight_map[key] = os.path.basename(fpath)
|
672 |
+
files = sorted(st_files)
|
673 |
+
return weight_map, files
|
674 |
+
|
675 |
+
|
676 |
+
def list_layer_keys(weight_map: Dict[str, str], layer_idx: int) -> List[str]:
|
677 |
+
prefix = f"model.layers.{layer_idx}."
|
678 |
+
return [k for k in weight_map.keys() if k.startswith(prefix)]
|
679 |
+
|
680 |
+
|
681 |
+
def load_tensors_by_keys(
|
682 |
+
model_dir: str,
|
683 |
+
weight_map: Dict[str, str],
|
684 |
+
keys: List[str],
|
685 |
+
cast_dtype_str: Optional[str] = None,
|
686 |
+
) -> Dict[str, torch.Tensor]:
|
687 |
+
files_to_keys: Dict[str, List[str]] = {}
|
688 |
+
for k in keys:
|
689 |
+
filename = weight_map[k]
|
690 |
+
files_to_keys.setdefault(filename, []).append(k)
|
691 |
+
|
692 |
+
out: Dict[str, torch.Tensor] = {}
|
693 |
+
for filename, klist in files_to_keys.items():
|
694 |
+
fpath = os.path.join(model_dir, filename)
|
695 |
+
with safe_open(fpath, framework="pt") as f:
|
696 |
+
for k in klist:
|
697 |
+
t = f.get_tensor(k)
|
698 |
+
t = cast_tensor_dtype(t, cast_dtype_str)
|
699 |
+
if not t.is_contiguous():
|
700 |
+
t = t.contiguous()
|
701 |
+
out[k] = t
|
702 |
+
return out
|
703 |
+
|
704 |
+
|
705 |
+
def rename_layer_keys(
|
706 |
+
tensors: Dict[str, torch.Tensor],
|
707 |
+
src_layer: int,
|
708 |
+
dst_layer: int,
|
709 |
+
) -> Dict[str, torch.Tensor]:
|
710 |
+
src_prefix = f"model.layers.{src_layer}."
|
711 |
+
dst_prefix = f"model.layers.{dst_layer}."
|
712 |
+
out: Dict[str, torch.Tensor] = {}
|
713 |
+
for k, v in tensors.items():
|
714 |
+
if not k.startswith(src_prefix):
|
715 |
+
continue
|
716 |
+
new_k = dst_prefix + k[len(src_prefix) :]
|
717 |
+
out[new_k] = v
|
718 |
+
return out
|
719 |
+
|
720 |
+
|
721 |
+
def copy_non_layer_tensors(
|
722 |
+
src_dir: str,
|
723 |
+
cast_dtype_str: Optional[str] = None,
|
724 |
+
) -> Dict[str, torch.Tensor]:
|
725 |
+
weight_map, _ = index_safetensors_dir(src_dir)
|
726 |
+
keys = [k for k in weight_map.keys() if "model.layers." not in k]
|
727 |
+
return load_tensors_by_keys(src_dir, weight_map, keys, cast_dtype_str)
|
728 |
+
|
729 |
+
|
730 |
+
def build_even_interleave_plan(
|
731 |
+
final_layers: int,
|
732 |
+
base_layers: int,
|
733 |
+
moe_layers: int,
|
734 |
+
) -> List[Tuple[str, int]]:
|
735 |
+
n_moe = min(moe_layers, max(0, final_layers - base_layers))
|
736 |
+
n_base = final_layers - n_moe
|
737 |
+
plan: List[Tuple[str, int]] = []
|
738 |
+
|
739 |
+
moe_slots = set()
|
740 |
+
for i in range(final_layers):
|
741 |
+
if (
|
742 |
+
math.floor((i + 1) * n_moe / max(1, final_layers))
|
743 |
+
!= math.floor(i * n_moe / max(1, final_layers))
|
744 |
+
and len(moe_slots) < n_moe
|
745 |
+
):
|
746 |
+
moe_slots.add(i)
|
747 |
+
|
748 |
+
used_moe = 0
|
749 |
+
used_base = 0
|
750 |
+
for i in range(final_layers):
|
751 |
+
if i in moe_slots:
|
752 |
+
src_idx = 0
|
753 |
+
if n_moe > 0:
|
754 |
+
src_idx = min(
|
755 |
+
moe_layers - 1,
|
756 |
+
math.floor(used_moe * moe_layers / max(1, n_moe)),
|
757 |
+
)
|
758 |
+
plan.append(("moe", src_idx))
|
759 |
+
used_moe += 1
|
760 |
+
else:
|
761 |
+
src_idx = 0
|
762 |
+
if n_base > 0:
|
763 |
+
src_idx = min(
|
764 |
+
base_layers - 1,
|
765 |
+
math.floor(used_base * base_layers / max(1, n_base)),
|
766 |
+
)
|
767 |
+
plan.append(("base", src_idx))
|
768 |
+
used_base += 1
|
769 |
+
|
770 |
+
return plan
|
771 |
+
|
772 |
+
|
773 |
+
def build_alternate_plan(
|
774 |
+
final_layers: int,
|
775 |
+
base_layers: int,
|
776 |
+
moe_layers: int,
|
777 |
+
) -> List[Tuple[str, int]]:
|
778 |
+
plan: List[Tuple[str, int]] = []
|
779 |
+
b = 0
|
780 |
+
m = 0
|
781 |
+
turn_moe = True
|
782 |
+
while len(plan) < final_layers:
|
783 |
+
if turn_moe and m < moe_layers:
|
784 |
+
plan.append(("moe", m))
|
785 |
+
m += 1
|
786 |
+
elif b < base_layers:
|
787 |
+
plan.append(("base", b))
|
788 |
+
b += 1
|
789 |
+
elif m < moe_layers:
|
790 |
+
plan.append(("moe", m))
|
791 |
+
m += 1
|
792 |
+
else:
|
793 |
+
plan.append(plan[-1])
|
794 |
+
turn_moe = not turn_moe
|
795 |
+
return plan
|
796 |
+
|
797 |
+
|
798 |
+
def build_composite_model(
|
799 |
+
base_model_dir: str,
|
800 |
+
moe_model_dir: str,
|
801 |
+
output_dir: str,
|
802 |
+
final_layers: int,
|
803 |
+
interleave_strategy: str = "even",
|
804 |
+
cast_dtype_str: Optional[str] = None,
|
805 |
+
low_memory: bool = True,
|
806 |
+
):
|
807 |
+
out_dir = Path(output_dir)
|
808 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
809 |
+
|
810 |
+
base_cfg = read_json(os.path.join(base_model_dir, "config.json"))
|
811 |
+
moe_cfg = read_json(os.path.join(moe_model_dir, "config.json"))
|
812 |
+
|
813 |
+
for k in ["hidden_size", "intermediate_size"]:
|
814 |
+
if base_cfg.get(k) != moe_cfg.get(k):
|
815 |
+
raise ValueError(
|
816 |
+
f"Config mismatch for {k}: base={base_cfg.get(k)} "
|
817 |
+
f"moe={moe_cfg.get(k)}"
|
818 |
+
)
|
819 |
+
|
820 |
+
base_layers = int(base_cfg.get("num_hidden_layers"))
|
821 |
+
moe_layers = int(moe_cfg.get("num_hidden_layers"))
|
822 |
+
|
823 |
+
logger.info(
|
824 |
+
f"Composite plan: base_layers={base_layers}, "
|
825 |
+
f"moe_layers={moe_layers}, final_layers={final_layers}"
|
826 |
+
)
|
827 |
+
|
828 |
+
if interleave_strategy == "even":
|
829 |
+
plan = build_even_interleave_plan(
|
830 |
+
final_layers, base_layers, moe_layers
|
831 |
+
)
|
832 |
+
elif interleave_strategy == "alternate":
|
833 |
+
plan = build_alternate_plan(
|
834 |
+
final_layers, base_layers, moe_layers
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
raise ValueError(
|
838 |
+
"interleave_strategy must be 'even' or 'alternate'"
|
839 |
+
)
|
840 |
+
|
841 |
+
out_cfg = dict(base_cfg)
|
842 |
+
out_cfg["num_hidden_layers"] = final_layers
|
843 |
+
write_json(out_dir / "config.json", out_cfg)
|
844 |
+
|
845 |
+
logger.info("Copying tokenizer/aux files from base...")
|
846 |
+
for fname in [
|
847 |
+
"tokenizer.json",
|
848 |
+
"tokenizer_config.json",
|
849 |
+
"special_tokens_map.json",
|
850 |
+
"vocab.json",
|
851 |
+
"merges.txt",
|
852 |
+
"tokenizer.model",
|
853 |
+
"generation_config.json",
|
854 |
+
]:
|
855 |
+
src = os.path.join(base_model_dir, fname)
|
856 |
+
if os.path.exists(src):
|
857 |
+
shutil.copy2(src, out_dir / fname)
|
858 |
+
|
859 |
+
base_map, _ = index_safetensors_dir(base_model_dir)
|
860 |
+
moe_map, _ = index_safetensors_dir(moe_model_dir)
|
861 |
+
|
862 |
+
logger.info("Saving non-layer tensors...")
|
863 |
+
non_layer_tensors = copy_non_layer_tensors(base_model_dir, cast_dtype_str)
|
864 |
+
non_layer_file = "model-nonlayers.safetensors"
|
865 |
+
save_file(non_layer_tensors, str(out_dir / non_layer_file))
|
866 |
+
out_weight_map: Dict[str, str] = {
|
867 |
+
k: non_layer_file for k in non_layer_tensors.keys()
|
868 |
+
}
|
869 |
+
del non_layer_tensors
|
870 |
+
if low_memory:
|
871 |
+
gc.collect()
|
872 |
+
|
873 |
+
logger.info("Building layers...")
|
874 |
+
for tgt_idx, (src_tag, src_idx) in tqdm(
|
875 |
+
list(enumerate(plan)), dynamic_ncols=True
|
876 |
+
):
|
877 |
+
src_dir = base_model_dir if src_tag == "base" else moe_model_dir
|
878 |
+
src_map = base_map if src_tag == "base" else moe_map
|
879 |
+
|
880 |
+
src_keys = list_layer_keys(src_map, src_idx)
|
881 |
+
if not src_keys:
|
882 |
+
raise RuntimeError(
|
883 |
+
f"No layer keys found for {src_tag} layer {src_idx}"
|
884 |
+
)
|
885 |
+
tensors = load_tensors_by_keys(
|
886 |
+
src_dir, src_map, src_keys, cast_dtype_str
|
887 |
+
)
|
888 |
+
renamed = rename_layer_keys(tensors, src_idx, tgt_idx)
|
889 |
+
|
890 |
+
layer_fname = f"model-layer-{tgt_idx:05d}.safetensors"
|
891 |
+
save_file(renamed, str(out_dir / layer_fname))
|
892 |
+
for k in renamed.keys():
|
893 |
+
out_weight_map[k] = layer_fname
|
894 |
+
|
895 |
+
del tensors, renamed
|
896 |
+
if low_memory:
|
897 |
+
gc.collect()
|
898 |
+
|
899 |
+
total_size = 0
|
900 |
+
for fname in set(out_weight_map.values()):
|
901 |
+
fp = out_dir / fname
|
902 |
+
if fp.exists():
|
903 |
+
total_size += fp.stat().st_size
|
904 |
+
|
905 |
+
index = {
|
906 |
+
"metadata": {"total_size": total_size, "format": "safetensors"},
|
907 |
+
"weight_map": out_weight_map,
|
908 |
+
}
|
909 |
+
write_json(out_dir / "model.safetensors.index.json", index)
|
910 |
+
logger.info(
|
911 |
+
f"Composite model written to {out_dir} with {final_layers} layers."
|
912 |
+
)
|
913 |
+
|
914 |
+
|
915 |
+
def validate_model_load(model_dir: str):
|
916 |
+
try:
|
917 |
+
from transformers import AutoModelForCausalLM
|
918 |
+
|
919 |
+
_ = AutoModelForCausalLM.from_pretrained(
|
920 |
+
model_dir,
|
921 |
+
torch_dtype="auto",
|
922 |
+
trust_remote_code=True,
|
923 |
+
device_map="meta",
|
924 |
+
)
|
925 |
+
logger.info("Model loads successfully on meta device.")
|
926 |
+
except Exception as e:
|
927 |
+
logger.error("Model failed to load on meta device.")
|
928 |
+
raise
|
929 |
+
|
930 |
+
|
931 |
+
def main():
|
932 |
+
parser = argparse.ArgumentParser(
|
933 |
+
description=(
|
934 |
+
"Convert MoE model to dense format with target compatibility, "
|
935 |
+
"and/or build a larger composite model by interleaving layers."
|
936 |
+
)
|
937 |
+
)
|
938 |
+
|
939 |
+
parser.add_argument("--model_id", type=str, help="MoE model ID or path")
|
940 |
+
parser.add_argument(
|
941 |
+
"--target_model",
|
942 |
+
type=str,
|
943 |
+
help="Target dense model for dimension matching",
|
944 |
+
)
|
945 |
+
parser.add_argument(
|
946 |
+
"--output_path",
|
947 |
+
type=str,
|
948 |
+
help="Path to save the converted dense model",
|
949 |
+
)
|
950 |
+
parser.add_argument(
|
951 |
+
"--method",
|
952 |
+
type=str,
|
953 |
+
choices=["concat_experts", "average", "first"],
|
954 |
+
default="average",
|
955 |
+
help="Expert merge method",
|
956 |
+
)
|
957 |
+
parser.add_argument(
|
958 |
+
"--low_memory",
|
959 |
+
action="store_true",
|
960 |
+
help="Low memory conversion",
|
961 |
+
)
|
962 |
+
parser.add_argument(
|
963 |
+
"--test_merge",
|
964 |
+
action="store_true",
|
965 |
+
help="Write a sample merge config",
|
966 |
+
)
|
967 |
+
|
968 |
+
parser.add_argument(
|
969 |
+
"--compose_interleaved",
|
970 |
+
action="store_true",
|
971 |
+
help="Build composite model by interleaving layers",
|
972 |
+
)
|
973 |
+
parser.add_argument(
|
974 |
+
"--base_model", type=str, help="Base dense model path or HF ID"
|
975 |
+
)
|
976 |
+
parser.add_argument(
|
977 |
+
"--moe_converted", type=str, help="Converted MoE-dense model dir"
|
978 |
+
)
|
979 |
+
parser.add_argument(
|
980 |
+
"--composite_output_path",
|
981 |
+
type=str,
|
982 |
+
help="Output path for composite model",
|
983 |
+
)
|
984 |
+
parser.add_argument(
|
985 |
+
"--final_layers",
|
986 |
+
type=int,
|
987 |
+
help="Number of transformer layers in composite",
|
988 |
+
)
|
989 |
+
parser.add_argument(
|
990 |
+
"--interleave_strategy",
|
991 |
+
type=str,
|
992 |
+
choices=["even", "alternate"],
|
993 |
+
default="even",
|
994 |
+
help="Interleaving strategy",
|
995 |
+
)
|
996 |
+
parser.add_argument(
|
997 |
+
"--cast_dtype",
|
998 |
+
type=str,
|
999 |
+
choices=["float32", "fp32", "float16", "fp16", "bfloat16", "bf16"],
|
1000 |
+
help="Optional cast during composite build",
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
parser.add_argument(
|
1004 |
+
"--validate_model",
|
1005 |
+
type=str,
|
1006 |
+
help="Validate a model directory on meta device",
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
args = parser.parse_args()
|
1010 |
+
|
1011 |
+
if args.validate_model:
|
1012 |
+
validate_model_load(args.validate_model)
|
1013 |
+
return
|
1014 |
+
|
1015 |
+
if args.compose_interleaved:
|
1016 |
+
if not args.base_model or not args.moe_converted:
|
1017 |
+
raise ValueError(
|
1018 |
+
"--compose_interleaved requires --base_model and "
|
1019 |
+
"--moe_converted"
|
1020 |
+
)
|
1021 |
+
base_dir = args.base_model
|
1022 |
+
if not os.path.exists(base_dir):
|
1023 |
+
logger.info(f"Downloading base model {base_dir}...")
|
1024 |
+
base_dir = snapshot_download(
|
1025 |
+
base_dir,
|
1026 |
+
cache_dir="./model_cache",
|
1027 |
+
resume_download=True,
|
1028 |
+
)
|
1029 |
+
moe_dir = args.moe_converted
|
1030 |
+
if not os.path.exists(moe_dir):
|
1031 |
+
raise FileNotFoundError(
|
1032 |
+
f"--moe_converted path not found: {moe_dir}"
|
1033 |
+
)
|
1034 |
+
out_dir = args.composite_output_path or "./composite_interleaved"
|
1035 |
+
if not args.final_layers:
|
1036 |
+
base_cfg = read_json(os.path.join(base_dir, "config.json"))
|
1037 |
+
moe_cfg = read_json(os.path.join(moe_dir, "config.json"))
|
1038 |
+
args.final_layers = int(base_cfg["num_hidden_layers"]) + int(
|
1039 |
+
moe_cfg["num_hidden_layers"]
|
1040 |
+
)
|
1041 |
+
build_composite_model(
|
1042 |
+
base_model_dir=base_dir,
|
1043 |
+
moe_model_dir=moe_dir,
|
1044 |
+
output_dir=out_dir,
|
1045 |
+
final_layers=int(args.final_layers),
|
1046 |
+
interleave_strategy=args.interleave_strategy,
|
1047 |
+
cast_dtype_str=args.cast_dtype,
|
1048 |
+
low_memory=args.low_memory,
|
1049 |
+
)
|
1050 |
+
logger.info(
|
1051 |
+
f"Composite interleaving complete. Output: {out_dir}"
|
1052 |
+
)
|
1053 |
+
return
|
1054 |
+
|
1055 |
+
if not args.model_id or not args.target_model or not args.output_path:
|
1056 |
+
parser.error(
|
1057 |
+
"Conversion mode requires --model_id, --target_model, "
|
1058 |
+
"and --output_path"
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
converter = MoEToDenseConverter(
|
1062 |
+
model_path=args.model_id,
|
1063 |
+
target_model_path=args.target_model,
|
1064 |
+
output_path=args.output_path,
|
1065 |
+
method=args.method,
|
1066 |
+
low_memory=args.low_memory,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
output_path = converter.convert()
|
1070 |
+
|
1071 |
+
if args.test_merge:
|
1072 |
+
merge_config = {
|
1073 |
+
"models": [
|
1074 |
+
{"model": args.target_model, "parameters": {"weight": 0.7}},
|
1075 |
+
{"model": str(output_path), "parameters": {"weight": 0.3}},
|
1076 |
+
],
|
1077 |
+
"merge_method": "linear",
|
1078 |
+
"base_model": args.target_model,
|
1079 |
+
"dtype": "bfloat16",
|
1080 |
+
}
|
1081 |
+
merge_config_path = Path(args.output_path).parent / "merge_config.yaml"
|
1082 |
+
try:
|
1083 |
+
import yaml
|
1084 |
+
|
1085 |
+
with open(merge_config_path, "w") as f:
|
1086 |
+
yaml.dump(merge_config, f)
|
1087 |
+
logger.info(
|
1088 |
+
f"Wrote sample merge configuration to {merge_config_path}"
|
1089 |
+
)
|
1090 |
+
except Exception as e:
|
1091 |
+
logger.warning(
|
1092 |
+
f"Could not write sample merge YAML: {e}"
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
|
1096 |
+
if __name__ == "__main__":
|
1097 |
+
main()
|
sample.txt
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant. Respond to the next user message in a single paragraph.
|
2 |
+
Explain why the sky appears blue using a two-sentence summary.
|
3 |
+
List three practical uses of hash maps and one limitation.
|
4 |
+
Summarize how gradient descent works without equations.
|
5 |
+
Give a neutral definition of reinforcement learning and a common pitfall.
|
6 |
+
Describe the difference between latency and throughput with a concrete example.
|
7 |
+
Explain what a vector database is and when you would not use one.
|
8 |
+
In one paragraph, compare JSON and Parquet from a data engineering perspective.
|
9 |
+
Outline the steps to reproduce a minimal bug report for a Python library.
|
10 |
+
Provide three strategies to reduce overfitting in neural networks.
|
11 |
+
Write a short product description for a reusable water bottle aimed at travelers.
|
12 |
+
Translate this to Spanish: The library opens at nine and closes at six.
|
13 |
+
Paraphrase this sentence: The results were surprising but not conclusive.
|
14 |
+
Convert the following bullet list into a single coherent paragraph: speed, safety, cost.
|
15 |
+
Explain what a checksum is and why it matters for file downloads.
|
16 |
+
State the pros and cons of using WebAssembly in the browser.
|
17 |
+
Explain CAP theorem in one paragraph and give a real-world trade-off.
|
18 |
+
Outline a basic incident response checklist for a small engineering team.
|
19 |
+
Describe how HTTP caching works and why ETags are useful.
|
20 |
+
Explain the purpose of unit tests versus integration tests.
|
21 |
+
Give a concise explanation of SIMD and where it helps.
|
22 |
+
Describe a reliable backup strategy for a personal laptop.
|
23 |
+
In two sentences, explain how public key cryptography enables secure messaging.
|
24 |
+
Explain the difference between imperative and declarative programming with an example.
|
25 |
+
Write a short release note for a minor version update of a CLI tool.
|
26 |
+
Explain what cosine similarity measures and where it’s used.
|
27 |
+
Provide a brief, friendly onboarding message for a new community member.
|
28 |
+
Give a two-sentence description of how transformers use attention.
|
29 |
+
Describe what a memory leak is and how to spot one.
|
30 |
+
Explain why idempotency keys are important in payment APIs.
|
31 |
+
Summarize the key ideas behind zero-copy I/O.
|
32 |
+
Define a feature flag and explain one safe rollout pattern.
|
33 |
+
Write a short announcement for scheduled maintenance with expected impact.
|
34 |
+
Explain what a bloom filter is and when false positives are acceptable.
|
35 |
+
Give a checklist for code review that fits on a sticky note.
|
36 |
+
Describe a resilient way to schedule background jobs in a web app.
|
37 |
+
Explain the concept of backpressure in streaming systems.
|
38 |
+
Compare columnar vs row-oriented storage in one paragraph.
|
39 |
+
Explain how pagination strategies differ between offset and cursor methods.
|
40 |
+
Write a brief description of a dataset card for a public corpus of recipes.
|
41 |
+
Explain what a content-addressable store is and why it’s powerful.
|
42 |
+
In one paragraph, describe how to interpret a confusion matrix.
|
43 |
+
Give guidance for writing good commit messages with examples.
|
44 |
+
Describe the trade-offs of strongly typed schemas versus schema-on-read.
|
45 |
+
Explain what vector quantization is in plain language.
|
46 |
+
Provide a short primer on HTTP/2 multiplexing and head-of-line blocking.
|
47 |
+
Explain what a rolling hash is and where it’s useful.
|
48 |
+
Write a brief warning about common pitfalls when using floating point numbers.
|
49 |
+
Describe how JWTs work and one reason to rotate signing keys.
|
50 |
+
Explain the difference between top-k and nucleus sampling in text generation.
|
51 |
+
Provide a simple migration plan from REST to gRPC for a single service.
|
52 |
+
Give a one-paragraph overview of entropy as used in information theory.
|
53 |
+
Explain how learned positional encodings differ from rotary encodings at a high level.
|
54 |
+
Write a concise guide to choosing batch size under a fixed memory budget.
|
55 |
+
Explain what an embedding dimension means and why larger isn’t always better.
|
56 |
+
Describe a safe pattern for storing API secrets in a deployment pipeline.
|
57 |
+
Provide a two-sentence overview of LoRA fine-tuning and its benefits.
|
58 |
+
Explain the idea of teacher forcing in sequence models and a downside.
|
59 |
+
Write a short FAQ entry: “Why are my generations repetitive?”
|
60 |
+
Describe how to evaluate a summarization system without human raters.
|
61 |
+
Explain the difference between deterministic and stochastic decoding.
|
62 |
+
Provide a brief note on choosing between FP16 and BF16 on modern GPUs.
|
63 |
+
Write a compact introduction to beam search and its main trade-offs.
|
64 |
+
Give a minimal example of a retry policy with exponential backoff described in words.
|
65 |
+
Explain why logging PII can create compliance risks and how to avoid it.
|
scales.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"9": { "attn_q": 0.96, "attn_k": 0.96, "mlp_down": 0.98 },
|
3 |
+
"11": { "attn_q": 0.90, "attn_k": 0.90 },
|
4 |
+
"13": { "attn_q": 0.90, "attn_k": 0.90 },
|
5 |
+
"25": { "attn_q": 0.92, "attn_k": 0.92 },
|
6 |
+
"30": { "attn_q": 0.88, "attn_k": 0.88, "mlp_down": 0.95 },
|
7 |
+
"34": { "attn_q": 0.90, "attn_k": 0.90 }
|
8 |
+
}
|
visualize_activations.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Visualize activation statistics JSON produced by activation_stats.py.
|
4 |
+
|
5 |
+
Generates an interactive HTML dashboard with:
|
6 |
+
- Token RMS mean across layers for attention q/k/v/o and MLP up/gate/down
|
7 |
+
- Zero fraction heatmap per layer and module type
|
8 |
+
- Attention entropy per layer (if present)
|
9 |
+
- Top-N modules by token_rms_mean and zero_fraction
|
10 |
+
"""
|
11 |
+
|
12 |
+
import argparse
|
13 |
+
import json
|
14 |
+
import re
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, Any, List, Optional, Tuple
|
18 |
+
|
19 |
+
import plotly.graph_objects as go
|
20 |
+
|
21 |
+
try:
|
22 |
+
import pandas as pd
|
23 |
+
except Exception:
|
24 |
+
pd = None
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class ModuleStat:
|
29 |
+
name: str
|
30 |
+
layer: Optional[int]
|
31 |
+
mtype: str
|
32 |
+
token_rms_mean: Optional[float]
|
33 |
+
token_rms_std: Optional[float]
|
34 |
+
mean: Optional[float]
|
35 |
+
std: Optional[float]
|
36 |
+
min: Optional[float]
|
37 |
+
max: Optional[float]
|
38 |
+
zero_frac: Optional[float]
|
39 |
+
count: int
|
40 |
+
nan_count: int
|
41 |
+
inf_count: int
|
42 |
+
|
43 |
+
|
44 |
+
ATTN_TYPES = ["q_proj", "k_proj", "v_proj", "o_proj"]
|
45 |
+
MLP_TYPES = ["mlp.up_proj", "mlp.gate_proj", "mlp.down_proj"]
|
46 |
+
NORM_HINTS = ["layernorm", ".norm"]
|
47 |
+
|
48 |
+
|
49 |
+
def parse_layer_idx(name: str) -> Optional[int]:
|
50 |
+
m = re.search(r"model\.layers\.(\d+)\.", name)
|
51 |
+
if m:
|
52 |
+
try:
|
53 |
+
return int(m.group(1))
|
54 |
+
except Exception:
|
55 |
+
return None
|
56 |
+
return None
|
57 |
+
|
58 |
+
|
59 |
+
def infer_type(name: str) -> str:
|
60 |
+
lname = name.lower()
|
61 |
+
for t in ATTN_TYPES:
|
62 |
+
if f".self_attn.{t}" in lname:
|
63 |
+
return t
|
64 |
+
for t in MLP_TYPES:
|
65 |
+
if t in lname:
|
66 |
+
return t
|
67 |
+
for h in NORM_HINTS:
|
68 |
+
if h in lname:
|
69 |
+
return "norm"
|
70 |
+
return "other"
|
71 |
+
|
72 |
+
|
73 |
+
def try_float(x: Any) -> Optional[float]:
|
74 |
+
try:
|
75 |
+
if x is None:
|
76 |
+
return None
|
77 |
+
return float(x)
|
78 |
+
except Exception:
|
79 |
+
return None
|
80 |
+
|
81 |
+
|
82 |
+
def load_stats_json(path: str) -> Tuple[List[ModuleStat], Dict[int, float]]:
|
83 |
+
with open(path, "r") as f:
|
84 |
+
data = json.load(f)
|
85 |
+
|
86 |
+
rows: List[ModuleStat] = []
|
87 |
+
attn_entropy: Dict[int, float] = {}
|
88 |
+
if "_attention_entropy" in data and isinstance(
|
89 |
+
data["_attention_entropy"], dict
|
90 |
+
):
|
91 |
+
for k, v in data["_attention_entropy"].items():
|
92 |
+
try:
|
93 |
+
attn_entropy[int(k)] = float(v)
|
94 |
+
except Exception:
|
95 |
+
continue
|
96 |
+
|
97 |
+
for name, entry in data.items():
|
98 |
+
if name.startswith("_"):
|
99 |
+
continue
|
100 |
+
if not isinstance(entry, dict):
|
101 |
+
continue
|
102 |
+
g = entry.get("global", {})
|
103 |
+
tr = entry.get("token_rms", {})
|
104 |
+
|
105 |
+
count = int(g.get("count", 0) or 0)
|
106 |
+
zero_count = int(g.get("zero_count", 0) or 0)
|
107 |
+
zero_frac = (zero_count / count) if count > 0 else None
|
108 |
+
|
109 |
+
rows.append(
|
110 |
+
ModuleStat(
|
111 |
+
name=name,
|
112 |
+
layer=parse_layer_idx(name),
|
113 |
+
mtype=infer_type(name),
|
114 |
+
token_rms_mean=try_float(tr.get("mean")),
|
115 |
+
token_rms_std=try_float(tr.get("std")),
|
116 |
+
mean=try_float(g.get("mean")),
|
117 |
+
std=try_float(g.get("std")),
|
118 |
+
min=try_float(g.get("min")),
|
119 |
+
max=try_float(g.get("max")),
|
120 |
+
zero_frac=zero_frac,
|
121 |
+
count=count,
|
122 |
+
nan_count=int(g.get("nan_count", 0) or 0),
|
123 |
+
inf_count=int(g.get("inf_count", 0) or 0),
|
124 |
+
)
|
125 |
+
)
|
126 |
+
|
127 |
+
return rows, attn_entropy
|
128 |
+
|
129 |
+
|
130 |
+
def filter_rows(
|
131 |
+
rows: List[ModuleStat],
|
132 |
+
allowed_types: Optional[List[str]],
|
133 |
+
layer_min: Optional[int],
|
134 |
+
layer_max: Optional[int],
|
135 |
+
) -> List[ModuleStat]:
|
136 |
+
out: List[ModuleStat] = []
|
137 |
+
for r in rows:
|
138 |
+
if allowed_types and (r.mtype not in allowed_types):
|
139 |
+
continue
|
140 |
+
if r.layer is not None:
|
141 |
+
if layer_min is not None and r.layer < layer_min:
|
142 |
+
continue
|
143 |
+
if layer_max is not None and r.layer > layer_max:
|
144 |
+
continue
|
145 |
+
out.append(r)
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
def group_by_layer_type(
|
150 |
+
rows: List[ModuleStat], types: List[str]
|
151 |
+
) -> Dict[str, Dict[int, ModuleStat]]:
|
152 |
+
d: Dict[str, Dict[int, ModuleStat]] = {t: {} for t in types}
|
153 |
+
for r in rows:
|
154 |
+
if r.layer is None:
|
155 |
+
continue
|
156 |
+
if r.mtype in d and r.layer not in d[r.mtype]:
|
157 |
+
d[r.mtype][r.layer] = r
|
158 |
+
return d
|
159 |
+
|
160 |
+
|
161 |
+
def make_sorted_layers(mapping: Dict[int, Any]) -> List[int]:
|
162 |
+
return sorted(list(mapping.keys()))
|
163 |
+
|
164 |
+
|
165 |
+
def fig_token_rms_lines(
|
166 |
+
rows: List[ModuleStat],
|
167 |
+
types: List[str],
|
168 |
+
title: str,
|
169 |
+
y_field: str = "token_rms_mean",
|
170 |
+
) -> go.Figure:
|
171 |
+
grouped = group_by_layer_type(rows, types)
|
172 |
+
fig = go.Figure()
|
173 |
+
for t in types:
|
174 |
+
lay2stat = grouped.get(t, {})
|
175 |
+
if not lay2stat:
|
176 |
+
continue
|
177 |
+
layers = make_sorted_layers(lay2stat)
|
178 |
+
ys = [
|
179 |
+
getattr(lay2stat[L], y_field) if lay2stat[L] else None
|
180 |
+
for L in layers
|
181 |
+
]
|
182 |
+
fig.add_trace(
|
183 |
+
go.Scatter(
|
184 |
+
x=layers,
|
185 |
+
y=ys,
|
186 |
+
mode="lines+markers",
|
187 |
+
name=t,
|
188 |
+
connectgaps=False,
|
189 |
+
)
|
190 |
+
)
|
191 |
+
fig.update_layout(
|
192 |
+
title=title,
|
193 |
+
xaxis_title="Layer",
|
194 |
+
yaxis_title=y_field,
|
195 |
+
template="plotly_white",
|
196 |
+
legend_title="Module type",
|
197 |
+
)
|
198 |
+
return fig
|
199 |
+
|
200 |
+
|
201 |
+
def fig_zero_frac_heatmap(rows: List[ModuleStat], types: List[str]) -> go.Figure:
|
202 |
+
grouped = group_by_layer_type(rows, types)
|
203 |
+
all_layers = sorted(
|
204 |
+
list({L for t in types for L in grouped.get(t, {}).keys()})
|
205 |
+
)
|
206 |
+
if not all_layers:
|
207 |
+
return go.Figure()
|
208 |
+
z = []
|
209 |
+
for t in types:
|
210 |
+
lay2stat = grouped.get(t, {})
|
211 |
+
row = []
|
212 |
+
for L in all_layers:
|
213 |
+
s = lay2stat.get(L)
|
214 |
+
row.append(s.zero_frac if s else None)
|
215 |
+
z.append(row)
|
216 |
+
|
217 |
+
fig = go.Figure(
|
218 |
+
data=go.Heatmap(
|
219 |
+
z=z,
|
220 |
+
x=all_layers,
|
221 |
+
y=types,
|
222 |
+
colorscale="Viridis",
|
223 |
+
colorbar_title="zero_fraction",
|
224 |
+
)
|
225 |
+
)
|
226 |
+
fig.update_layout(
|
227 |
+
title="Zero fraction heatmap by layer and module type",
|
228 |
+
xaxis_title="Layer",
|
229 |
+
yaxis_title="Module type",
|
230 |
+
template="plotly_white",
|
231 |
+
)
|
232 |
+
return fig
|
233 |
+
|
234 |
+
|
235 |
+
def fig_attention_entropy(entropy: Dict[int, float]) -> go.Figure:
|
236 |
+
if not entropy:
|
237 |
+
return go.Figure()
|
238 |
+
layers = sorted(entropy.keys())
|
239 |
+
vals = [entropy[L] for L in layers]
|
240 |
+
fig = go.Figure(
|
241 |
+
data=go.Scatter(
|
242 |
+
x=layers, y=vals, mode="lines+markers", name="attn_entropy"
|
243 |
+
)
|
244 |
+
)
|
245 |
+
fig.update_layout(
|
246 |
+
title="Attention entropy (mean per layer)",
|
247 |
+
xaxis_title="Layer",
|
248 |
+
yaxis_title="Entropy",
|
249 |
+
template="plotly_white",
|
250 |
+
)
|
251 |
+
return fig
|
252 |
+
|
253 |
+
|
254 |
+
def top_k_bar(
|
255 |
+
rows: List[ModuleStat],
|
256 |
+
field: str,
|
257 |
+
title: str,
|
258 |
+
top_k: int = 20,
|
259 |
+
reverse: bool = True,
|
260 |
+
) -> go.Figure:
|
261 |
+
vals: List[Tuple[str, float]] = []
|
262 |
+
for r in rows:
|
263 |
+
v = getattr(r, field)
|
264 |
+
if v is None:
|
265 |
+
continue
|
266 |
+
vals.append((r.name, float(v)))
|
267 |
+
if not vals:
|
268 |
+
return go.Figure()
|
269 |
+
vals.sort(key=lambda x: x[1], reverse=reverse)
|
270 |
+
vals = vals[:top_k]
|
271 |
+
names = [v[0] for v in vals]
|
272 |
+
ys = [v[1] for v in vals]
|
273 |
+
fig = go.Figure(
|
274 |
+
data=go.Bar(
|
275 |
+
x=ys,
|
276 |
+
y=names,
|
277 |
+
orientation="h",
|
278 |
+
marker_color="steelblue",
|
279 |
+
name=field,
|
280 |
+
)
|
281 |
+
)
|
282 |
+
fig.update_layout(
|
283 |
+
title=title,
|
284 |
+
xaxis_title=field,
|
285 |
+
yaxis_title="Module",
|
286 |
+
template="plotly_white",
|
287 |
+
margin=dict(l=200),
|
288 |
+
)
|
289 |
+
return fig
|
290 |
+
|
291 |
+
|
292 |
+
def make_dashboard(
|
293 |
+
attn_rows: List[ModuleStat],
|
294 |
+
mlp_rows: List[ModuleStat],
|
295 |
+
all_rows: List[ModuleStat],
|
296 |
+
attn_entropy: Dict[int, float],
|
297 |
+
top_k: int,
|
298 |
+
) -> str:
|
299 |
+
figs: List[go.Figure] = []
|
300 |
+
|
301 |
+
figs.append(
|
302 |
+
fig_token_rms_lines(
|
303 |
+
attn_rows, ATTN_TYPES, "Attention Token RMS mean by layer"
|
304 |
+
)
|
305 |
+
)
|
306 |
+
figs.append(
|
307 |
+
fig_token_rms_lines(
|
308 |
+
mlp_rows, MLP_TYPES, "MLP Token RMS mean by layer"
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
figs.append(fig_zero_frac_heatmap(attn_rows, ATTN_TYPES))
|
313 |
+
figs.append(fig_zero_frac_heatmap(mlp_rows, MLP_TYPES))
|
314 |
+
|
315 |
+
if attn_entropy:
|
316 |
+
figs.append(fig_attention_entropy(attn_entropy))
|
317 |
+
|
318 |
+
figs.append(
|
319 |
+
top_k_bar(
|
320 |
+
all_rows,
|
321 |
+
"token_rms_mean",
|
322 |
+
f"Top {top_k} modules by token_rms_mean",
|
323 |
+
top_k=top_k,
|
324 |
+
)
|
325 |
+
)
|
326 |
+
figs.append(
|
327 |
+
top_k_bar(
|
328 |
+
all_rows,
|
329 |
+
"zero_frac",
|
330 |
+
f"Top {top_k} modules by zero_fraction",
|
331 |
+
top_k=top_k,
|
332 |
+
)
|
333 |
+
)
|
334 |
+
|
335 |
+
parts = []
|
336 |
+
for i, fig in enumerate(figs):
|
337 |
+
parts.append(
|
338 |
+
fig.to_html(
|
339 |
+
full_html=False,
|
340 |
+
include_plotlyjs="cdn",
|
341 |
+
default_width="100%",
|
342 |
+
default_height="600px",
|
343 |
+
)
|
344 |
+
)
|
345 |
+
|
346 |
+
html = f"""
|
347 |
+
<!DOCTYPE html>
|
348 |
+
<html lang="en">
|
349 |
+
<head>
|
350 |
+
<meta charset="utf-8" />
|
351 |
+
<title>Activation Statistics Dashboard</title>
|
352 |
+
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
353 |
+
<style>
|
354 |
+
body {{
|
355 |
+
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto,
|
356 |
+
"Helvetica Neue", Arial, "Noto Sans", "Liberation Sans",
|
357 |
+
sans-serif;
|
358 |
+
margin: 0;
|
359 |
+
padding: 0 16px 64px 16px;
|
360 |
+
background: #ffffff;
|
361 |
+
color: #111;
|
362 |
+
}}
|
363 |
+
h1 {{
|
364 |
+
font-size: 22px;
|
365 |
+
font-weight: 600;
|
366 |
+
margin-top: 16px;
|
367 |
+
}}
|
368 |
+
.fig {{
|
369 |
+
margin: 24px 0;
|
370 |
+
border: 1px solid #eee;
|
371 |
+
padding: 8px;
|
372 |
+
border-radius: 8px;
|
373 |
+
box-shadow: 0 1px 0 rgba(0,0,0,0.04);
|
374 |
+
}}
|
375 |
+
</style>
|
376 |
+
</head>
|
377 |
+
<body>
|
378 |
+
<h1>Activation Statistics Dashboard</h1>
|
379 |
+
<div class="fig">{parts[0] if len(parts) > 0 else ""}</div>
|
380 |
+
<div class="fig">{parts[1] if len(parts) > 1 else ""}</div>
|
381 |
+
<div class="fig">{parts[2] if len(parts) > 2 else ""}</div>
|
382 |
+
<div class="fig">{parts[3] if len(parts) > 3 else ""}</div>
|
383 |
+
<div class="fig">{parts[4] if len(parts) > 4 else ""}</div>
|
384 |
+
<div class="fig">{parts[5] if len(parts) > 5 else ""}</div>
|
385 |
+
<div class="fig">{parts[6] if len(parts) > 6 else ""}</div>
|
386 |
+
</body>
|
387 |
+
</html>
|
388 |
+
"""
|
389 |
+
return html
|
390 |
+
|
391 |
+
|
392 |
+
def main():
|
393 |
+
ap = argparse.ArgumentParser(
|
394 |
+
description="Visualize activation stats JSON to interactive HTML."
|
395 |
+
)
|
396 |
+
ap.add_argument("--stats_json", type=str, required=True)
|
397 |
+
ap.add_argument("--out_html", type=str, required=True)
|
398 |
+
ap.add_argument("--out_csv", type=str)
|
399 |
+
ap.add_argument("--types", type=str, default=None)
|
400 |
+
ap.add_argument("--layer_min", type=int, default=None)
|
401 |
+
ap.add_argument("--layer_max", type=int, default=None)
|
402 |
+
ap.add_argument("--top_k", type=int, default=20)
|
403 |
+
args = ap.parse_args()
|
404 |
+
|
405 |
+
rows, attn_entropy = load_stats_json(args.stats_json)
|
406 |
+
|
407 |
+
allowed_types = None
|
408 |
+
if args.types:
|
409 |
+
allowed_types = [t.strip() for t in args.types.split(",") if t.strip()]
|
410 |
+
|
411 |
+
attn_rows = filter_rows(
|
412 |
+
rows,
|
413 |
+
allowed_types or ATTN_TYPES,
|
414 |
+
args.layer_min,
|
415 |
+
args.layer_max,
|
416 |
+
)
|
417 |
+
attn_rows = [r for r in attn_rows if r.mtype in ATTN_TYPES]
|
418 |
+
|
419 |
+
mlp_rows = filter_rows(
|
420 |
+
rows,
|
421 |
+
allowed_types or MLP_TYPES,
|
422 |
+
args.layer_min,
|
423 |
+
args.layer_max,
|
424 |
+
)
|
425 |
+
mlp_rows = [r for r in mlp_rows if r.mtype in MLP_TYPES]
|
426 |
+
|
427 |
+
all_rows = filter_rows(rows, allowed_types, args.layer_min, args.layer_max)
|
428 |
+
|
429 |
+
html = make_dashboard(attn_rows, mlp_rows, all_rows, attn_entropy, args.top_k)
|
430 |
+
out_html = Path(args.out_html)
|
431 |
+
out_html.parent.mkdir(parents=True, exist_ok=True)
|
432 |
+
with open(out_html, "w", encoding="utf-8") as f:
|
433 |
+
f.write(html)
|
434 |
+
print(f"Wrote HTML dashboard to: {out_html}")
|
435 |
+
|
436 |
+
if args.out_csv:
|
437 |
+
if pd is None:
|
438 |
+
print("pandas not available; CSV not written.")
|
439 |
+
else:
|
440 |
+
df = pd.DataFrame(
|
441 |
+
[
|
442 |
+
{
|
443 |
+
"name": r.name,
|
444 |
+
"layer": r.layer,
|
445 |
+
"type": r.mtype,
|
446 |
+
"token_rms_mean": r.token_rms_mean,
|
447 |
+
"token_rms_std": r.token_rms_std,
|
448 |
+
"mean": r.mean,
|
449 |
+
"std": r.std,
|
450 |
+
"min": r.min,
|
451 |
+
"max": r.max,
|
452 |
+
"zero_frac": r.zero_frac,
|
453 |
+
"count": r.count,
|
454 |
+
"nan_count": r.nan_count,
|
455 |
+
"inf_count": r.inf_count,
|
456 |
+
}
|
457 |
+
for r in all_rows
|
458 |
+
]
|
459 |
+
)
|
460 |
+
out_csv = Path(args.out_csv)
|
461 |
+
out_csv.parent.mkdir(parents=True, exist_ok=True)
|
462 |
+
df.to_csv(out_csv, index=False)
|
463 |
+
print(f"Wrote CSV summary to: {out_csv}")
|
464 |
+
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
main()
|