#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Layer surgery on safetensors shards: # - Replace selected transformer blocks with donor blocks # - Optionally rescale specific projections per layer # # Example: # python layer_surgery.py \ # --composite ./qwen3-8b-plus-moe-64L \ # --base Qwen/Qwen3-8B \ # --out ./qwen3-8b-plus-moe-64L-surgery \ # --replace_layers 61 \ # --map ratio import argparse import glob import json import math import os import shutil from pathlib import Path from typing import Dict, List, Optional, Tuple import torch from safetensors import safe_open from safetensors.torch import save_file from huggingface_hub import snapshot_download def read_json(p: str) -> Dict: with open(p, "r") as f: return json.load(f) def write_json(p: Path, data: Dict): with open(p, "w") as f: json.dump(data, f, indent=2) def ensure_local(model_or_path: str) -> str: if os.path.isdir(model_or_path): return model_or_path print(f"Downloading {model_or_path} ...") return snapshot_download( model_or_path, cache_dir="./model_cache", resume_download=True ) def index_dir(model_dir: str) -> Tuple[Dict[str, str], List[str]]: idx_path = os.path.join(model_dir, "model.safetensors.index.json") weight_map: Dict[str, str] = {} files: List[str] = [] if os.path.exists(idx_path): idx = read_json(idx_path) weight_map = idx.get("weight_map", {}) files = sorted(list({os.path.join(model_dir, f) for f in weight_map.values()})) return weight_map, files st_files = glob.glob(os.path.join(model_dir, "*.safetensors")) if not st_files: raise FileNotFoundError(f"No .safetensors found in {model_dir}") for fpath in st_files: with safe_open(fpath, framework="pt") as f: for k in f.keys(): weight_map[k] = os.path.basename(fpath) files = sorted(st_files) return weight_map, files def parse_layers(spec: str) -> List[int]: out: List[int] = [] for chunk in spec.split(","): chunk = chunk.strip() if not chunk: continue if "-" in chunk: a, b = chunk.split("-") a, b = int(a), int(b) out.extend(list(range(a, b + 1))) else: out.append(int(chunk)) return sorted(list({x for x in out})) def layer_prefix(li: int) -> str: return f"model.layers.{li}." def map_layer(dst_idx: int, dst_total: int, src_total: int, mode: str) -> int: if src_total <= 0: raise ValueError("src_total must be > 0") if mode == "wrap": return dst_idx % src_total x = int(math.floor(dst_idx * src_total / max(1, dst_total))) return max(0, min(src_total - 1, x)) def build_explicit_map(pairs: Optional[str]) -> Dict[int, int]: m: Dict[int, int] = {} if not pairs: return m for token in pairs.split(","): token = token.strip() if not token: continue a, b = token.split(":") m[int(a)] = int(b) return m SCALE_KEYS = { "attn_q": ".self_attn.q_proj.weight", "attn_k": ".self_attn.k_proj.weight", "attn_v": ".self_attn.v_proj.weight", "attn_o": ".self_attn.o_proj.weight", "mlp_up": ".mlp.up_proj.weight", "mlp_gate": ".mlp.gate_proj.weight", "mlp_down": ".mlp.down_proj.weight", } def load_scales(scale_json: Optional[str]) -> Dict[int, Dict[str, float]]: if not scale_json: return {} data = read_json(scale_json) out: Dict[int, Dict[str, float]] = {} for k, v in data.items(): li = int(k) out[li] = {} for mk, sf in v.items(): if mk not in SCALE_KEYS: raise ValueError(f"Unknown scale key '{mk}'. Valid: {list(SCALE_KEYS)}") out[li][mk] = float(sf) return out def tensor_layer_idx(tensor_name: str) -> Optional[int]: parts = tensor_name.split(".") if len(parts) > 3 and parts[0] == "model" and parts[1] == "layers": try: return int(parts[2]) except Exception: return None return None def apply_scales_if_needed( tname: str, tensor: torch.Tensor, li: int, scales: Dict[int, Dict[str, float]] ) -> torch.Tensor: if li not in scales: return tensor spec = scales[li] for key, suffix in SCALE_KEYS.items(): if key in spec and tname.endswith(suffix): s = spec[key] return (tensor * tensor.new_tensor(s)).contiguous() return tensor def main(): ap = argparse.ArgumentParser( description="Layer surgery on safetensors: replace and/or rescale layers." ) ap.add_argument("--composite", type=str, required=True) ap.add_argument("--base", type=str, help="Donor model dir or HF ID") ap.add_argument("--out", type=str, required=True) ap.add_argument("--replace_layers", type=str, help='e.g. "61" or "48-55,60,62"') ap.add_argument( "--map", type=str, default="ratio", choices=["ratio", "wrap"] ) ap.add_argument("--map_pairs", type=str, help='e.g. "61:34,55:30"') ap.add_argument("--scale_json", type=str) args = ap.parse_args() comp_dir = ensure_local(args.composite) out_dir = Path(args.out) out_dir.mkdir(parents=True, exist_ok=True) comp_cfg = read_json(os.path.join(comp_dir, "config.json")) L_comp = int(comp_cfg.get("num_hidden_layers")) print(f"Composite layers: {L_comp}") replace_set: List[int] = [] if args.replace_layers: replace_set = parse_layers(args.replace_layers) if not args.base: raise ValueError("--base is required when --replace_layers is set.") base_dir = ensure_local(args.base) base_cfg = read_json(os.path.join(base_dir, "config.json")) L_base = int(base_cfg.get("num_hidden_layers")) print(f"Donor layers: {L_base}") explicit = build_explicit_map(args.map_pairs) else: base_dir = "" L_base = 0 explicit = {} comp_map, comp_files = index_dir(comp_dir) if replace_set: base_map, base_files = index_dir(base_dir) else: base_map, base_files = {}, [] scales = load_scales(args.scale_json) if scales: print("Scales loaded for layers:", sorted(scales.keys())) to_copy = [ "config.json", "tokenizer.json", "tokenizer_config.json", "special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.model", "generation_config.json", ] for fname in to_copy: src = os.path.join(comp_dir, fname) if os.path.exists(src): shutil.copy2(src, out_dir / fname) print("Performing surgery shard-by-shard...") out_weight_map: Dict[str, str] = {} for comp_f in comp_files: rel = os.path.basename(comp_f) out_f = out_dir / rel new_tensors: Dict[str, torch.Tensor] = {} with safe_open(comp_f, framework="pt") as fcomp: keys = list(fcomp.keys()) for k in keys: li = tensor_layer_idx(k) tensor = None if li is not None and li in replace_set: if li in explicit: src_li = explicit[li] else: src_li = map_layer(li, L_comp, L_base, args.map) src_prefix = layer_prefix(src_li) dst_prefix = layer_prefix(li) donor_k = src_prefix + k[len(dst_prefix) :] donor_file = base_map.get(donor_k) if donor_file is None: raise KeyError(f"Donor tensor not found: {donor_k}") donor_path = os.path.join(base_dir, donor_file) with safe_open(donor_path, framework="pt") as fbase: tensor = fbase.get_tensor(donor_k) else: tensor = fcomp.get_tensor(k) if li is not None: tensor = apply_scales_if_needed(k, tensor, li, scales) if not tensor.is_contiguous(): tensor = tensor.contiguous() new_tensors[k] = tensor out_weight_map[k] = rel save_file(new_tensors, str(out_f)) total_size = 0 for fname in set(out_weight_map.values()): fp = out_dir / fname if fp.exists(): total_size += fp.stat().st_size index = {"metadata": {"total_size": total_size, "format": "safetensors"}, "weight_map": out_weight_map} write_json(out_dir / "model.safetensors.index.json", index) print(f"Done. Wrote modified shards and index to: {out_dir}") print("\nTip: validate load quickly (meta device):") print(f" from transformers import AutoModelForCausalLM") print(f" AutoModelForCausalLM.from_pretrained('{str(out_dir)}', device_map='meta', trust_remote_code=True)") if __name__ == "__main__": main()