soupstick commited on
Commit
e58c443
·
verified ·
1 Parent(s): ab2d931

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +25 -43
README.md CHANGED
@@ -1,60 +1,42 @@
1
  ---
2
- library_name: peft
3
  license: other
4
  base_model: Qwen/Qwen2-VL-2B-Instruct
 
5
  tags:
6
- - llama-factory
7
  - lora
8
- - generated_from_trainer
9
- model-index:
10
- - name: qwen-vl-amazon-ft
11
- results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # qwen-vl-amazon-ft
18
 
19
- This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) on the amazon_qwen dataset.
20
 
21
- ## Model description
22
 
23
- More information needed
 
 
 
24
 
25
- ## Intended uses & limitations
 
26
 
27
- More information needed
 
 
28
 
29
- ## Training and evaluation data
 
 
 
30
 
31
- More information needed
32
 
33
- ## Training procedure
34
 
35
- ### Training hyperparameters
36
-
37
- The following hyperparameters were used during training:
38
- - learning_rate: 2e-05
39
- - train_batch_size: 1
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - gradient_accumulation_steps: 16
43
- - total_train_batch_size: 16
44
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
- - lr_scheduler_type: linear
46
- - lr_scheduler_warmup_steps: 50
47
- - training_steps: 500
48
- - mixed_precision_training: Native AMP
49
-
50
- ### Training results
51
-
52
-
53
-
54
- ### Framework versions
55
-
56
- - PEFT 0.15.2
57
- - Transformers 4.55.0
58
- - Pytorch 2.6.0+cu118
59
- - Datasets 3.6.0
60
- - Tokenizers 0.21.1
 
1
  ---
 
2
  license: other
3
  base_model: Qwen/Qwen2-VL-2B-Instruct
4
+ library_name: transformers
5
  tags:
6
+ - qwen2-vl
7
  - lora
8
+ - multimodal
9
+ - amazon-listing
10
+ - kaggle
 
11
  ---
12
 
13
+ # Qwen2-VL LoRA Amazon Listing Generator
 
14
 
15
+ Lightweight LoRA adapter trained with **LLaMA-Factory** to turn a product image into an Amazon-style listing (title, bullets, description).
16
 
17
+ > **Note:** This repo ships the **adapter only**. Load it on top of `Qwen/Qwen2-VL-2B-Instruct`.
18
 
19
+ ## Quickstart
20
 
21
+ ```python
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+ from peft import PeftModel
24
+ from PIL import Image
25
 
26
+ base = "Qwen/Qwen2-VL-2B-Instruct"
27
+ adapter = "soupstick/qwen2vl-amazon-ft-lora"
28
 
29
+ model = AutoModelForCausalLM.from_pretrained(base, trust_remote_code=True, device_map="auto")
30
+ model = PeftModel.from_pretrained(model, adapter)
31
+ tok = AutoTokenizer.from_pretrained(base, trust_remote_code=True)
32
 
33
+ img = Image.open("sample.png").convert("RGB")
34
+ resp, _ = model.chat(tok, query="<image>\nGenerate Amazon listing.", history=[], image=img)
35
+ print(resp)
36
+ Training
37
 
38
+ Framework: LLaMA-Factory (LoRA)
39
 
40
+ Task: Multimodal instruction-following for e-commerce listings
41
 
42
+ Data: community dataset (see the dataset card linked below)