soupstick commited on
Commit
5537a38
·
verified ·
1 Parent(s): b2695ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -173
README.md CHANGED
@@ -1,199 +1,87 @@
1
  ---
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language: en
4
  library_name: transformers
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - Open-Orca/OpenOrca
8
+ - Open-Orca/SlimOrca
9
+ base_model: HuggingFaceTB/SmolLM3-3B
10
+ tags:
11
+ - qlora
12
+ - smollm3
13
+ - fine-tuned
14
+ - rag
15
  ---
16
 
17
+ # 🧠 SmolLM3 QLoRA - OpenOrca Fine-Tuned
18
 
19
+ **SmolLM3 QLoRA** is a lightweight, 3B parameter open-source language model based on [SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B), fine-tuned using [QLoRA](https://arxiv.org/abs/2305.14314) on the [OpenOrca Slim](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset (500K examples). It is optimized for **retrieval-augmented generation (RAG)** use cases and delivers **competitive benchmark scores** against much larger models like LLaMA-2 7B.
20
 
21
+ ---
22
 
23
+ ## ✨ Model Highlights
24
 
25
+ - 🔍 **Trained for real-world queries** using OpenOrca-style assistant data.
26
+ - ⚡ **Efficient:** 3B parameter model that runs on a single A100 or consumer GPU.
27
+ - 🧠 **Competent generalist:** Performs well on reasoning and knowledge tasks.
28
+ - 🔗 **RAG-friendly:** Ideal for hybrid search setups using BM25 + FAISS.
29
+ - 🧪 **Evaluated on benchmarks:** Outperforms similar-sized models.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ ---
32
 
33
+ ## 🧰 Intended Use
34
 
35
+ SmolLM3 QLoRA is intended to serve as a fast and compact assistant model for:
36
 
37
+ - 💬 Lightweight RAG pipelines
38
+ - 📚 Document and web snippet reasoning
39
+ - 🤖 Prototype assistants
40
+ - 🧪 AI research in instruction tuning and hybrid retrieval
41
 
42
+ ---
43
 
44
+ ## 🧪 Evaluation
45
 
46
+ The model has been evaluated using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) on a 500-sample subset of key academic benchmarks.
47
 
48
+ | Task | Accuracy | Normalized Accuracy | LLaMA-2 7B |
49
+ |----------------|----------|---------------------|------------|
50
+ | **HellaSwag** | 51.2% | 66.4% | 56.7% / 73.2% |
51
+ | **ARC-Challenge** | 49.4% | 52.2% | 53.7% / 56.9% |
52
+ | **BoolQ** | 81.0% | — | 83.1% |
53
 
54
+ 👉 Model achieves **~90–95% of LLaMA-2 7B** performance at less than **half the size**.
55
 
56
+ ---
57
 
58
+ ## 🏗️ Training Configuration
59
 
60
+ - **Base Model:** [`SmolLM3-3B`](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)
61
+ - **Finetuning Method:** QLoRA (LoRA rank=8)
62
+ - **Dataset:** `Open-Orca/SlimOrca` (500K samples)
63
+ - **Precision:** bfloat16
64
+ - **Epochs:** 3
65
+ - **Max Length:** 1024 tokens
66
+ - **Hardware:** 2x A100 80GB
67
+ - **Framework:** 🤗 Transformers + TRL
68
 
69
+ ---
70
 
71
+ ## 🧠 How to Use
72
 
73
+ ```python
74
+ from transformers import AutoTokenizer, AutoModelForCausalLM
75
 
76
+ model_id = "soupstick/smollm3-qlora-ft"
77
 
78
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
79
+ model = AutoModelForCausalLM.from_pretrained(
80
+ model_id,
81
+ device_map="auto",
82
+ torch_dtype="auto"
83
+ )
84
 
85
+ inputs = tokenizer("Explain retrieval-augmented generation.", return_tensors="pt").to(model.device)
86
+ outputs = model.generate(**inputs, max_new_tokens=300)
87
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))