Spaces:
Runtime error
Runtime error
UI and memory improvements.
Browse files- app.py +14 -46
- inference_manga_v2.py +40 -17
- process_image.py +43 -0
app.py
CHANGED
@@ -1,50 +1,12 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import util
|
|
|
4 |
from run_cmd import run_cmd
|
5 |
-
from random import randint
|
6 |
-
from PIL import Image
|
7 |
-
import tempfile
|
8 |
|
9 |
-
|
10 |
|
11 |
is_colab = util.is_google_colab()
|
12 |
|
13 |
-
run_cmd("pip install pngquant")
|
14 |
-
|
15 |
-
def inference(img, size, type):
|
16 |
-
_id = randint(1, 10000)
|
17 |
-
INPUT_DIR = os.path.join(temp_path, f"input_image{str(_id)}")
|
18 |
-
OUTPUT_DIR = os.path.join(temp_path, f"output_image{str(_id)}")
|
19 |
-
img_in_path = os.path.join(INPUT_DIR, "1.jpg")
|
20 |
-
img_out_path = os.path.join(OUTPUT_DIR, f"1_{size}.png")
|
21 |
-
run_cmd(f"rm -rf {INPUT_DIR}")
|
22 |
-
run_cmd(f"rm -rf {OUTPUT_DIR}")
|
23 |
-
run_cmd(f"mkdir {INPUT_DIR}")
|
24 |
-
run_cmd(f"mkdir {OUTPUT_DIR}")
|
25 |
-
img.save(img_in_path, "PNG")
|
26 |
-
|
27 |
-
if type == "Manga":
|
28 |
-
run_cmd(f"python inference_manga_v2.py {img_in_path} {img_out_path}")
|
29 |
-
else:
|
30 |
-
run_cmd(f"python inference.py {img_in_path} {img_out_path} {type}")
|
31 |
-
|
32 |
-
img_out = Image.open(img_out_path)
|
33 |
-
|
34 |
-
if size == "x2":
|
35 |
-
img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
|
36 |
-
|
37 |
-
#img_out.save(img_out_path, optimize=True) # Add more optimizations
|
38 |
-
#img_out = Image.open(img_out_path)
|
39 |
-
|
40 |
-
# Remove input and output image
|
41 |
-
run_cmd(f"rm -f {img_in_path}")
|
42 |
-
#run_cmd(f"rm -f {img_out_path}")
|
43 |
-
|
44 |
-
out_file.update(value=img_out_path, visible=True)
|
45 |
-
|
46 |
-
return img_out, gr.File.update(value=img_out_path, visible=True)
|
47 |
-
|
48 |
css = '''
|
49 |
.file-preview {
|
50 |
overflow: hidden !important;
|
@@ -59,17 +21,23 @@ css = '''
|
|
59 |
.file-preview div div:nth-child(3) {
|
60 |
text-align: right !important;
|
61 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
'''
|
63 |
|
64 |
title = "ESRGAN Upscaling With Custom Models"
|
65 |
-
description = "This space uses old ESRGAN architecture to upscale images, using models made by the community."
|
66 |
-
article = "<p><a href='https://upscale.wiki/wiki/Model_Database'>Model Database</a></p>"
|
67 |
|
68 |
with gr.Blocks(title=title, css=css) as demo:
|
69 |
gr.Markdown(
|
70 |
f"""
|
71 |
# {title}
|
72 |
-
|
|
|
|
|
73 |
""")
|
74 |
|
75 |
with gr.Box():
|
@@ -83,14 +51,14 @@ with gr.Blocks(title=title, css=css) as demo:
|
|
83 |
upscale_btn = gr.Button(value="Upscale", variant="primary")
|
84 |
|
85 |
with gr.Column():
|
86 |
-
output_image = gr.Image(type="filepath", interactive=False, label="Upscaled image", )
|
87 |
|
88 |
with gr.Row():
|
89 |
out_file = gr.File(interactive=False, show_label=False, visible=False)
|
90 |
|
91 |
-
gr.HTML(value=
|
92 |
|
93 |
-
upscale_btn.click(inference, inputs=[input_image, upscale_size, upscale_type], outputs=[output_image, out_file])
|
94 |
|
95 |
demo.queue()
|
96 |
demo.launch(debug=is_colab, share=is_colab, inline=is_colab)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import util
|
3 |
+
import process_image
|
4 |
from run_cmd import run_cmd
|
|
|
|
|
|
|
5 |
|
6 |
+
run_cmd("pip install split-image")
|
7 |
|
8 |
is_colab = util.is_google_colab()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
css = '''
|
11 |
.file-preview {
|
12 |
overflow: hidden !important;
|
|
|
21 |
.file-preview div div:nth-child(3) {
|
22 |
text-align: right !important;
|
23 |
}
|
24 |
+
|
25 |
+
#preview_img {
|
26 |
+
user-select: none !important;
|
27 |
+
touch-action: none !important;
|
28 |
+
pointer-events: none !important;
|
29 |
+
}
|
30 |
'''
|
31 |
|
32 |
title = "ESRGAN Upscaling With Custom Models"
|
|
|
|
|
33 |
|
34 |
with gr.Blocks(title=title, css=css) as demo:
|
35 |
gr.Markdown(
|
36 |
f"""
|
37 |
# {title}
|
38 |
+
This space uses old ESRGAN architecture to upscale images, using models made by the community.
|
39 |
+
|
40 |
+
Once upscaled, click or tap the download button under the image to download it.
|
41 |
""")
|
42 |
|
43 |
with gr.Box():
|
|
|
51 |
upscale_btn = gr.Button(value="Upscale", variant="primary")
|
52 |
|
53 |
with gr.Column():
|
54 |
+
output_image = gr.Image(type="filepath", interactive=False, label="Upscaled image", elem_id="preview_img")
|
55 |
|
56 |
with gr.Row():
|
57 |
out_file = gr.File(interactive=False, show_label=False, visible=False)
|
58 |
|
59 |
+
gr.HTML(value="<p><a href='https://upscale.wiki/wiki/Model_Database'>Model Database</a></p>")
|
60 |
|
61 |
+
upscale_btn.click(process_image.inference, inputs=[input_image, upscale_size, upscale_type], outputs=[output_image, out_file])
|
62 |
|
63 |
demo.queue()
|
64 |
demo.launch(debug=is_colab, share=is_colab, inline=is_colab)
|
inference_manga_v2.py
CHANGED
@@ -4,6 +4,10 @@ import cv2
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import architecture as arch
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def is_cuda():
|
9 |
if torch.cuda.is_available():
|
@@ -31,20 +35,39 @@ for k, v in model.named_parameters():
|
|
31 |
v.requires_grad = False
|
32 |
model = model.to(device)
|
33 |
|
34 |
-
base = os.path.
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import architecture as arch
|
7 |
+
from split_image import split_image
|
8 |
+
from run_cmd import run_cmd
|
9 |
+
import re
|
10 |
+
from pathlib import Path
|
11 |
|
12 |
def is_cuda():
|
13 |
if torch.cuda.is_available():
|
|
|
35 |
v.requires_grad = False
|
36 |
model = model.to(device)
|
37 |
|
38 |
+
base = os.path.dirname(img_path)
|
39 |
+
|
40 |
+
# Split image
|
41 |
+
run_cmd(f"split-image {img_path} 7 7 --output-dir {base} --quiet")
|
42 |
+
|
43 |
+
for root, dirs, files in os.walk(base, topdown=True):
|
44 |
+
for x, name in enumerate(files):
|
45 |
+
file_path = os.path.join(root, name)
|
46 |
+
|
47 |
+
if file_path == img_path:
|
48 |
+
print(file_path)
|
49 |
+
continue
|
50 |
+
|
51 |
+
# Read image
|
52 |
+
img = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
|
53 |
+
img = img * 1.0 / 255
|
54 |
+
img = torch.from_numpy(img[np.newaxis, :, :]).float()
|
55 |
+
img_LR = img.unsqueeze(0)
|
56 |
+
img_LR = img_LR.to(device)
|
57 |
+
|
58 |
+
#print(f"Start upscaling tile {x}...")
|
59 |
+
with torch.no_grad():
|
60 |
+
output = model(img_LR).squeeze(dim=0).float().cpu().clamp_(0, 1).numpy()
|
61 |
+
output = np.transpose(output, (1, 2, 0))
|
62 |
+
output = (output * 255.0).round()
|
63 |
+
#print(f"Finished upscaling tile {x}, saving tile.")
|
64 |
+
#print(output_dir)
|
65 |
+
cv2.imwrite(file_path, output)
|
66 |
+
|
67 |
+
# Join all tiles
|
68 |
+
run_cmd(f"cd {base} && split-image input.jpg 7 7 -r --quiet")
|
69 |
+
|
70 |
+
# Open image and save as png with the ouput name
|
71 |
+
img_out = cv2.imread(img_path);
|
72 |
+
cv2.imwrite(output_dir, img_out, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
|
73 |
+
|
process_image.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from run_cmd import run_cmd
|
4 |
+
from random import randint
|
5 |
+
from PIL import Image
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
temp_path = tempfile.gettempdir()
|
9 |
+
|
10 |
+
def inference(img, size, type):
|
11 |
+
if not img:
|
12 |
+
raise Exception("No image!")
|
13 |
+
|
14 |
+
_id = randint(1, 10000)
|
15 |
+
INPUT_DIR = os.path.join(temp_path, f"input_image{str(_id)}")
|
16 |
+
OUTPUT_DIR = os.path.join(temp_path, f"output_image{str(_id)}")
|
17 |
+
img_in_path = os.path.join(INPUT_DIR, "input.jpg")
|
18 |
+
img_out_path = os.path.join(OUTPUT_DIR, f"output_{size}.png")
|
19 |
+
run_cmd(f"rm -rf {INPUT_DIR}")
|
20 |
+
run_cmd(f"rm -rf {OUTPUT_DIR}")
|
21 |
+
run_cmd(f"mkdir {INPUT_DIR}")
|
22 |
+
run_cmd(f"mkdir {OUTPUT_DIR}")
|
23 |
+
img.save(img_in_path, "PNG")
|
24 |
+
|
25 |
+
if type == "Manga":
|
26 |
+
run_cmd(f"python inference_manga_v2.py {img_in_path} {img_out_path}")
|
27 |
+
else:
|
28 |
+
run_cmd(f"python inference.py {img_in_path} {img_out_path} {type}")
|
29 |
+
|
30 |
+
img_out = Image.open(img_out_path)
|
31 |
+
|
32 |
+
if size == "x2":
|
33 |
+
img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
|
34 |
+
|
35 |
+
#img_out.save(img_out_path, optimize=True) # Add more optimizations
|
36 |
+
#img_out = Image.open(img_out_path)
|
37 |
+
|
38 |
+
# Remove input and output image
|
39 |
+
#run_cmd(f"rm -f {img_in_path}")
|
40 |
+
|
41 |
+
img_out.thumbnail((600, 600), Image.ANTIALIAS)
|
42 |
+
|
43 |
+
return img_out, gr.File.update(value=img_out_path, visible=True)
|