import gradio as gr from transformers import pipeline # Dictionary of available models MODELS = { "ModelScope (Text-to-Video)": "damo-vilab/modelscope-text-to-video-synthesis", "Hunyuan (if available)": "TencentARC/HunyuanVideo-I2V", "Mochi (Genmo)": "genmo/Mochi1", "Wan1.2": "Wan-AI/Wan2.1-T2V-14B" } def generate_video(prompt, model_name): try: pipe = pipeline("text-to-video", model=MODELS[model_name]) output = pipe(prompt) return output["video"] except Exception as e: return f"Error: {e}" demo = gr.Interface( fn=generate_video, inputs=[ gr.Textbox(label="Prompt"), gr.Dropdown(choices=list(MODELS.keys()), label="Choose Model") ], outputs="video", title="Text-to-Video Benchmarking Suite", description="Test prompt alignment, motion quality, and therapeutic video generation across multiple models" ) demo.launch()