Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| from transformers import BertTokenizer, BertForSequenceClassification | |
| from tqdm import tqdm # Import tqdm for progress bar | |
| import time # for time taken calc | |
| # Load pre-trained model | |
| label_dict = {"Urgency": 0, "Not Dark Pattern": 1, "Scarcity": 2, "Misdirection": 3, "Social Proof": 4, "Obstruction": 5, "Sneaking": 6, "Forced Action": 7} | |
| model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=len(label_dict)) | |
| # Load fine-tuned weights | |
| fine_tuned_model_path = r"models\finetuned_BERT_epoch_5.model" | |
| model.load_state_dict(torch.load(fine_tuned_model_path, map_location=torch.device('cpu'))) | |
| # Preprocess the new text | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) | |
| # Function to map numeric label to dark pattern name | |
| def get_dark_pattern_name(label): | |
| reverse_label_dict = {v: k for k, v in label_dict.items()} | |
| return reverse_label_dict[label] | |
| def find_dark_pattern(text_predict): | |
| encoded_text = tokenizer.encode_plus( | |
| text_predict, | |
| add_special_tokens=True, | |
| return_attention_mask=True, | |
| pad_to_max_length=True, | |
| max_length=256, | |
| return_tensors='pt' | |
| ) | |
| # Making the predictions | |
| model.eval() | |
| with torch.no_grad(): | |
| inputs = { | |
| 'input_ids': encoded_text['input_ids'], | |
| 'attention_mask': encoded_text['attention_mask'] | |
| } | |
| outputs = model(**inputs) | |
| predictions = outputs.logits | |
| # Post-process the predictions | |
| probabilities = torch.nn.functional.softmax(predictions, dim=1) | |
| predicted_label = torch.argmax(probabilities, dim=1).item() | |
| return get_dark_pattern_name(predicted_label) | |
| # Streamlit app | |
| def main(): | |
| # navigation | |
| st.page_link("app.py", label="Home", icon="🏠") | |
| st.page_link("pages/page_1.py", label="Training Metrics", icon="1️⃣") | |
| # st.page_link("pages/page_2.py", label="Page 2", icon="2️⃣") | |
| st.page_link("https://github.com/4darsh-Dev/CogniGaurd", label="GitHub", icon="🌎") | |
| # Set page title | |
| st.title("Dark Pattern Detector") | |
| # Display welcome message | |
| st.write("Welcome to Dark Pattern Detector powered by CogniGuard") | |
| # | |
| st.write("#### Built with Fine-Tuned BERT and Hugging Face Transformers") | |
| # Get user input | |
| text_to_predict = st.text_input("Enter the text to find Dark Pattern") | |
| if st.button("Predict"): | |
| # Record the start time | |
| start_time = time.time() | |
| # Add a simple progress message | |
| st.write("Predicting Dark Pattern...") | |
| progress_bar = st.progress(0) | |
| for i in tqdm(range(10), desc="Predicting", unit="prediction"): | |
| predicted_darkp = find_dark_pattern(text_to_predict) | |
| progress_bar.progress((i + 1) * 10) | |
| time.sleep(0.5) # Simulate some processing time | |
| # Record the end time | |
| end_time = time.time() | |
| # Calculate the total time taken | |
| total_time = end_time - start_time | |
| # Display the predicted dark pattern and total time taken | |
| st.write(f"Result: {predicted_darkp}") | |
| st.write(f"Total Time Taken: {total_time:.2f} seconds") | |
| # Add footer | |
| st.markdown('<p style="text-align:center;">Made with ❤️ by <a href="https://www.adarshmaurya.onionreads.com">Adarsh Maurya</a></p>', unsafe_allow_html=True) | |
| # Add page visit count | |
| page_visits = st.session_state.get('page_visits', 0) | |
| page_visits += 1 | |
| st.session_state['page_visits'] = page_visits | |
| # Display page visit count | |
| st.markdown(f'<p style="text-align:center;">Page Visits: {page_visits}</p>', unsafe_allow_html=True) | |
| # Run the app | |
| if __name__ == "__main__": | |
| main() | |