|
|
|
|
|
import sys
|
|
import time
|
|
import math
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn.modules.loss import _WeightedLoss
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
map_loc = None if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
class MaskedCrossEntropyCriterion(_WeightedLoss):
|
|
|
|
def __init__(self, ignore_index=[-100], reduce=None):
|
|
super(MaskedCrossEntropyCriterion, self).__init__()
|
|
self.padding_idx = ignore_index
|
|
self.reduce = reduce
|
|
|
|
def forward(self, outputs, targets):
|
|
lprobs = nn.functional.log_softmax(outputs, dim=-1)
|
|
lprobs = lprobs.view(-1, lprobs.size(-1))
|
|
|
|
for idx in self.padding_idx:
|
|
|
|
targets[targets == idx] = 0
|
|
|
|
nll_loss = -lprobs.gather(dim=-1, index=targets.unsqueeze(1))
|
|
if self.reduce:
|
|
nll_loss = nll_loss.sum()
|
|
|
|
return nll_loss.squeeze()
|
|
|
|
|
|
def softIoU(out, target, e=1e-6, sum_axis=1):
|
|
|
|
num = (out*target).sum(sum_axis, True)
|
|
den = (out+target-out*target).sum(sum_axis, True) + e
|
|
iou = num / den
|
|
|
|
return iou
|
|
|
|
|
|
def update_error_types(error_types, y_pred, y_true):
|
|
|
|
error_types['tp_i'] += (y_pred * y_true).sum(0).cpu().data.numpy()
|
|
error_types['fp_i'] += (y_pred * (1-y_true)).sum(0).cpu().data.numpy()
|
|
error_types['fn_i'] += ((1-y_pred) * y_true).sum(0).cpu().data.numpy()
|
|
error_types['tn_i'] += ((1-y_pred) * (1-y_true)).sum(0).cpu().data.numpy()
|
|
|
|
error_types['tp_all'] += (y_pred * y_true).sum().item()
|
|
error_types['fp_all'] += (y_pred * (1-y_true)).sum().item()
|
|
error_types['fn_all'] += ((1-y_pred) * y_true).sum().item()
|
|
|
|
|
|
def compute_metrics(ret_metrics, error_types, metric_names, eps=1e-10, weights=None):
|
|
|
|
if 'accuracy' in metric_names:
|
|
ret_metrics['accuracy'].append(np.mean((error_types['tp_i'] + error_types['tn_i']) / (error_types['tp_i'] + error_types['fp_i'] + error_types['fn_i'] + error_types['tn_i'])))
|
|
if 'jaccard' in metric_names:
|
|
ret_metrics['jaccard'].append(error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all'] + eps))
|
|
if 'dice' in metric_names:
|
|
ret_metrics['dice'].append(2*error_types['tp_all'] / (2*(error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all']) + eps))
|
|
if 'f1' in metric_names:
|
|
pre = error_types['tp_i'] / (error_types['tp_i'] + error_types['fp_i'] + eps)
|
|
rec = error_types['tp_i'] / (error_types['tp_i'] + error_types['fn_i'] + eps)
|
|
f1_perclass = 2*(pre * rec) / (pre + rec + eps)
|
|
if 'f1_ingredients' not in ret_metrics.keys():
|
|
ret_metrics['f1_ingredients'] = [np.average(f1_perclass, weights=weights)]
|
|
else:
|
|
ret_metrics['f1_ingredients'].append(np.average(f1_perclass, weights=weights))
|
|
|
|
pre = error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + eps)
|
|
rec = error_types['tp_all'] / (error_types['tp_all'] + error_types['fn_all'] + eps)
|
|
f1 = 2*(pre * rec) / (pre + rec + eps)
|
|
ret_metrics['f1'].append(f1)
|
|
|