Update src/streamlit_app.py
Browse files- src/streamlit_app.py +11 -26
src/streamlit_app.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
-
# from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
| 4 |
-
# from utils import download_video, extract_audio, accent_classify
|
| 5 |
-
# import whisper
|
| 6 |
from transformers import pipeline
|
| 7 |
from transformers.utils import logging
|
| 8 |
import numpy as np
|
|
@@ -16,7 +13,7 @@ logging.set_verbosity_info()
|
|
| 16 |
RATE_HZ = 16000
|
| 17 |
MAX_SECONDS = 1
|
| 18 |
MAX_LENGTH = RATE_HZ * MAX_SECONDS
|
| 19 |
-
|
| 20 |
|
| 21 |
def download_video(url, output_path="video.mp4"):
|
| 22 |
ydl_opts = {
|
|
@@ -44,27 +41,24 @@ def extract_audio(input_path, output_path="audio.mp3"):
|
|
| 44 |
return output_path
|
| 45 |
|
| 46 |
def split_audio(file):
|
|
|
|
| 47 |
try:
|
| 48 |
audio, rate = torchaudio.load(str(file))
|
|
|
|
| 49 |
num_segments = (len(audio[0]) // MAX_LENGTH) # Floor division to get segments
|
| 50 |
-
segmented_audio = []
|
| 51 |
for i in range(num_segments):
|
|
|
|
|
|
|
| 52 |
start = i * MAX_LENGTH
|
| 53 |
end = min((i + 1) * MAX_LENGTH, len(audio[0]))
|
| 54 |
segment = audio[0][start:end]
|
| 55 |
-
transform = torchaudio.transforms.Resample(rate, RATE_HZ)
|
| 56 |
segment = transform(segment).squeeze(0).numpy().reshape(-1)
|
| 57 |
segmented_audio.append(segment)
|
| 58 |
-
df_segments = pd.DataFrame({'audio': segmented_audio})
|
| 59 |
-
return df_segments
|
| 60 |
-
|
| 61 |
except Exception as e:
|
| 62 |
print(f"Error processing file: {e}")
|
| 63 |
-
return
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
# audio_df = split_audio(audio_path)
|
| 67 |
-
# return pipe(np.concatenate(audio_df["audio"][:250].to_list()))[0]
|
| 68 |
|
| 69 |
accent_mapping = {
|
| 70 |
'us': 'American',
|
|
@@ -89,15 +83,9 @@ if st.button("Analyze"):
|
|
| 89 |
with st.spinner("Extracting audio..."):
|
| 90 |
audio_path = extract_audio(video_path)
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# transcription = result['text']
|
| 96 |
-
# # pass
|
| 97 |
-
with st.spinner("Extracting waves..."):
|
| 98 |
-
audio_df = split_audio(audio_path)
|
| 99 |
-
waves = np.concatenate(audio_df["audio"][:250].to_list())
|
| 100 |
-
|
| 101 |
with st.spinner("Classifying accent..."):
|
| 102 |
model_name = "dima806/english_accents_classification"
|
| 103 |
pipe = pipeline('audio-classification', model=model_name, device=0)
|
|
@@ -110,9 +98,6 @@ if st.button("Analyze"):
|
|
| 110 |
st.markdown(f"**Accent:** {accent}")
|
| 111 |
st.markdown(f"**Confidence Score:** {confidence:.2f}%")
|
| 112 |
|
| 113 |
-
# st.markdown("**Transcription:**")
|
| 114 |
-
# st.text_area("Transcript", transcription, height=200)
|
| 115 |
-
|
| 116 |
# Cleanup
|
| 117 |
os.remove(video_path)
|
| 118 |
os.remove(audio_path)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from transformers.utils import logging
|
| 5 |
import numpy as np
|
|
|
|
| 13 |
RATE_HZ = 16000
|
| 14 |
MAX_SECONDS = 1
|
| 15 |
MAX_LENGTH = RATE_HZ * MAX_SECONDS
|
| 16 |
+
MAX_SEGMENTS = 250
|
| 17 |
|
| 18 |
def download_video(url, output_path="video.mp4"):
|
| 19 |
ydl_opts = {
|
|
|
|
| 41 |
return output_path
|
| 42 |
|
| 43 |
def split_audio(file):
|
| 44 |
+
segmented_audio = []
|
| 45 |
try:
|
| 46 |
audio, rate = torchaudio.load(str(file))
|
| 47 |
+
transform = torchaudio.transforms.Resample(rate, RATE_HZ)
|
| 48 |
num_segments = (len(audio[0]) // MAX_LENGTH) # Floor division to get segments
|
|
|
|
| 49 |
for i in range(num_segments):
|
| 50 |
+
if i >= MAX_SEGMENTS:
|
| 51 |
+
break
|
| 52 |
start = i * MAX_LENGTH
|
| 53 |
end = min((i + 1) * MAX_LENGTH, len(audio[0]))
|
| 54 |
segment = audio[0][start:end]
|
|
|
|
| 55 |
segment = transform(segment).squeeze(0).numpy().reshape(-1)
|
| 56 |
segmented_audio.append(segment)
|
|
|
|
|
|
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
print(f"Error processing file: {e}")
|
| 59 |
+
return segmented_audio
|
| 60 |
+
else:
|
| 61 |
+
return np.concatenate(segmented_audio)
|
|
|
|
|
|
|
| 62 |
|
| 63 |
accent_mapping = {
|
| 64 |
'us': 'American',
|
|
|
|
| 83 |
with st.spinner("Extracting audio..."):
|
| 84 |
audio_path = extract_audio(video_path)
|
| 85 |
|
| 86 |
+
with st.spinner("Extracting Waves..."):
|
| 87 |
+
waves = split_audio(audio_path)
|
| 88 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with st.spinner("Classifying accent..."):
|
| 90 |
model_name = "dima806/english_accents_classification"
|
| 91 |
pipe = pipeline('audio-classification', model=model_name, device=0)
|
|
|
|
| 98 |
st.markdown(f"**Accent:** {accent}")
|
| 99 |
st.markdown(f"**Confidence Score:** {confidence:.2f}%")
|
| 100 |
|
|
|
|
|
|
|
|
|
|
| 101 |
# Cleanup
|
| 102 |
os.remove(video_path)
|
| 103 |
os.remove(audio_path)
|