Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import depth_pro
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
# Load model and preprocessing transform
|
| 8 |
+
model, transform = depth_pro.create_model_and_transforms()
|
| 9 |
+
model.eval()
|
| 10 |
+
|
| 11 |
+
def predict_depth(input_image):
|
| 12 |
+
# Preprocess the image
|
| 13 |
+
result = depth_pro.load_rgb(input_image.name)
|
| 14 |
+
image = result[0]
|
| 15 |
+
f_px = result[-1] # Assuming f_px is the last item in the returned tuple
|
| 16 |
+
image = transform(image)
|
| 17 |
+
|
| 18 |
+
# Run inference
|
| 19 |
+
prediction = model.infer(image, f_px=f_px)
|
| 20 |
+
depth = prediction["depth"] # Depth in [m]
|
| 21 |
+
focallength_px = prediction["focallength_px"] # Focal length in pixels
|
| 22 |
+
|
| 23 |
+
# Normalize depth for visualization
|
| 24 |
+
depth_normalized = (depth - np.min(depth)) / (np.max(depth) - np.min(depth))
|
| 25 |
+
|
| 26 |
+
# Create a color map
|
| 27 |
+
plt.figure(figsize=(10, 10))
|
| 28 |
+
plt.imshow(depth_normalized, cmap='viridis')
|
| 29 |
+
plt.colorbar(label='Depth')
|
| 30 |
+
plt.title('Predicted Depth Map')
|
| 31 |
+
plt.axis('off')
|
| 32 |
+
|
| 33 |
+
# Save the plot to a file
|
| 34 |
+
output_path = "depth_map.png"
|
| 35 |
+
plt.savefig(output_path)
|
| 36 |
+
plt.close()
|
| 37 |
+
|
| 38 |
+
return output_path, f"Focal length: {focallength_px:.2f} pixels"
|
| 39 |
+
|
| 40 |
+
# Create Gradio interface
|
| 41 |
+
iface = gr.Interface(
|
| 42 |
+
fn=predict_depth,
|
| 43 |
+
inputs=gr.Image(type="filepath"),
|
| 44 |
+
outputs=[gr.Image(type="filepath", label="Depth Map"), gr.Textbox(label="Focal Length")],
|
| 45 |
+
title="Depth Prediction Demo",
|
| 46 |
+
description="Upload an image to predict its depth map and focal length."
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Launch the interface
|
| 50 |
+
iface.launch()
|