Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	add open3d and let user set parameters for 3D model
Browse files- app.py +61 -22
- requirements.txt +2 -1
    	
        app.py
    CHANGED
    
    | @@ -54,7 +54,7 @@ def resize_image(image_path, max_size=1024): | |
| 54 | 
             
                        img.save(temp_file, format="PNG")
         | 
| 55 | 
             
                        return temp_file.name
         | 
| 56 |  | 
| 57 | 
            -
            def generate_3d_model(depth, image_path, focallength_px):
         | 
| 58 | 
             
                """
         | 
| 59 | 
             
                Generate a textured 3D mesh from the depth map and the original image.
         | 
| 60 | 
             
                """
         | 
| @@ -112,7 +112,7 @@ def generate_3d_model(depth, image_path, focallength_px): | |
| 112 | 
             
                print("Original mesh - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 113 |  | 
| 114 | 
             
                # 1. Mesh simplification
         | 
| 115 | 
            -
                target_faces = int(len(mesh.faces) *  | 
| 116 | 
             
                mesh = mesh.simplify_quadric_decimation(face_count=target_faces)
         | 
| 117 | 
             
                print("After simplification - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 118 |  | 
| @@ -124,11 +124,12 @@ def generate_3d_model(depth, image_path, focallength_px): | |
| 124 | 
             
                    print("After removing small components - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 125 |  | 
| 126 | 
             
                # 3. Smooth the mesh
         | 
| 127 | 
            -
                 | 
|  | |
| 128 | 
             
                print("After smoothing - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 129 |  | 
| 130 | 
             
                # 4. Remove thin features
         | 
| 131 | 
            -
                mesh = remove_thin_features(mesh)
         | 
| 132 | 
             
                print("After removing thin features - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 133 |  | 
| 134 | 
             
                # Export the mesh to OBJ files with unique filenames
         | 
| @@ -163,6 +164,18 @@ def remove_thin_features(mesh, thickness_threshold=0.01): | |
| 163 |  | 
| 164 | 
             
                return mesh
         | 
| 165 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 166 | 
             
            @spaces.GPU(duration=20)
         | 
| 167 | 
             
            def predict_depth(input_image):
         | 
| 168 | 
             
                temp_file = None
         | 
| @@ -222,13 +235,13 @@ def predict_depth(input_image): | |
| 222 | 
             
                    # Generate the 3D model from the depth map and resized image
         | 
| 223 | 
             
                    view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
         | 
| 224 |  | 
| 225 | 
            -
                    return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path
         | 
| 226 | 
             
                except Exception as e:
         | 
| 227 | 
             
                    # Return error messages in case of failures
         | 
| 228 | 
             
                    import traceback
         | 
| 229 | 
             
                    error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
         | 
| 230 | 
             
                    print(error_message)  # Print the full error message to the console
         | 
| 231 | 
            -
                    return None, error_message, None, None, None
         | 
| 232 | 
             
                finally:
         | 
| 233 | 
             
                    # Clean up by removing the temporary resized image file
         | 
| 234 | 
             
                    if temp_file and os.path.exists(temp_file):
         | 
| @@ -245,18 +258,9 @@ def get_last_commit_timestamp(): | |
| 245 | 
             
            # Create the Gradio interface with appropriate input and output components. 
         | 
| 246 | 
             
            last_updated = get_last_commit_timestamp()
         | 
| 247 |  | 
| 248 | 
            -
             | 
| 249 | 
            -
                 | 
| 250 | 
            -
                 | 
| 251 | 
            -
                outputs=[
         | 
| 252 | 
            -
                    gr.Image(type="filepath", label="Depth Map"),
         | 
| 253 | 
            -
                    gr.Textbox(label="Focal Length or Error Message"),
         | 
| 254 | 
            -
                    gr.File(label="Download Raw Depth Map (CSV)"),
         | 
| 255 | 
            -
                    gr.Model3D(label="View 3D Model"),
         | 
| 256 | 
            -
                    gr.File(label="Download 3D Model (OBJ)")
         | 
| 257 | 
            -
                ],
         | 
| 258 | 
            -
                title="DepthPro Demo with 3D Visualization",
         | 
| 259 | 
            -
                description=(
         | 
| 260 | 
             
                    "An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n"
         | 
| 261 | 
             
                    "Forked from https://huggingface.co/spaces/akhaliq/depth-pro and model from https://huggingface.co/apple/DepthPro\n"
         | 
| 262 | 
             
                    "**Instructions:**\n"
         | 
| @@ -264,10 +268,45 @@ iface = gr.Interface( | |
| 264 | 
             
                    "2. The app will predict the depth map, display it, and provide the focal length.\n"
         | 
| 265 | 
             
                    "3. Download the raw depth data as a CSV file.\n"
         | 
| 266 | 
             
                    "4. View the generated 3D model textured with the original image.\n"
         | 
| 267 | 
            -
                    "5.  | 
|  | |
| 268 | 
             
                    f"Last updated: {last_updated}"
         | 
| 269 | 
            -
                ) | 
| 270 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 271 |  | 
| 272 | 
             
            # Launch the Gradio interface with sharing enabled
         | 
| 273 | 
            -
            iface.launch(share=True) | 
|  | |
| 54 | 
             
                        img.save(temp_file, format="PNG")
         | 
| 55 | 
             
                        return temp_file.name
         | 
| 56 |  | 
| 57 | 
            +
            def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01):
         | 
| 58 | 
             
                """
         | 
| 59 | 
             
                Generate a textured 3D mesh from the depth map and the original image.
         | 
| 60 | 
             
                """
         | 
|  | |
| 112 | 
             
                print("Original mesh - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 113 |  | 
| 114 | 
             
                # 1. Mesh simplification
         | 
| 115 | 
            +
                target_faces = int(len(mesh.faces) * simplification_factor)
         | 
| 116 | 
             
                mesh = mesh.simplify_quadric_decimation(face_count=target_faces)
         | 
| 117 | 
             
                print("After simplification - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 118 |  | 
|  | |
| 124 | 
             
                    print("After removing small components - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 125 |  | 
| 126 | 
             
                # 3. Smooth the mesh
         | 
| 127 | 
            +
                for _ in range(smoothing_iterations):
         | 
| 128 | 
            +
                    mesh = mesh.smoothed()
         | 
| 129 | 
             
                print("After smoothing - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 130 |  | 
| 131 | 
             
                # 4. Remove thin features
         | 
| 132 | 
            +
                mesh = remove_thin_features(mesh, thickness_threshold=thin_threshold)
         | 
| 133 | 
             
                print("After removing thin features - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
         | 
| 134 |  | 
| 135 | 
             
                # Export the mesh to OBJ files with unique filenames
         | 
|  | |
| 164 |  | 
| 165 | 
             
                return mesh
         | 
| 166 |  | 
| 167 | 
            +
            def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
         | 
| 168 | 
            +
                # Load depth from CSV
         | 
| 169 | 
            +
                depth = np.loadtxt(depth_csv, delimiter=',')
         | 
| 170 | 
            +
                
         | 
| 171 | 
            +
                # Generate new 3D model with updated parameters
         | 
| 172 | 
            +
                view_model_path, download_model_path = generate_3d_model(
         | 
| 173 | 
            +
                    depth, image_path, focallength_px, 
         | 
| 174 | 
            +
                    simplification_factor, smoothing_iterations, thin_threshold
         | 
| 175 | 
            +
                )
         | 
| 176 | 
            +
                
         | 
| 177 | 
            +
                return view_model_path, download_model_path
         | 
| 178 | 
            +
             | 
| 179 | 
             
            @spaces.GPU(duration=20)
         | 
| 180 | 
             
            def predict_depth(input_image):
         | 
| 181 | 
             
                temp_file = None
         | 
|  | |
| 235 | 
             
                    # Generate the 3D model from the depth map and resized image
         | 
| 236 | 
             
                    view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
         | 
| 237 |  | 
| 238 | 
            +
                    return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px
         | 
| 239 | 
             
                except Exception as e:
         | 
| 240 | 
             
                    # Return error messages in case of failures
         | 
| 241 | 
             
                    import traceback
         | 
| 242 | 
             
                    error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
         | 
| 243 | 
             
                    print(error_message)  # Print the full error message to the console
         | 
| 244 | 
            +
                    return None, error_message, None, None, None, None, None
         | 
| 245 | 
             
                finally:
         | 
| 246 | 
             
                    # Clean up by removing the temporary resized image file
         | 
| 247 | 
             
                    if temp_file and os.path.exists(temp_file):
         | 
|  | |
| 258 | 
             
            # Create the Gradio interface with appropriate input and output components. 
         | 
| 259 | 
             
            last_updated = get_last_commit_timestamp()
         | 
| 260 |  | 
| 261 | 
            +
            with gr.Blocks() as iface:
         | 
| 262 | 
            +
                gr.Markdown("# DepthPro Demo with 3D Visualization")
         | 
| 263 | 
            +
                gr.Markdown(
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 264 | 
             
                    "An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n"
         | 
| 265 | 
             
                    "Forked from https://huggingface.co/spaces/akhaliq/depth-pro and model from https://huggingface.co/apple/DepthPro\n"
         | 
| 266 | 
             
                    "**Instructions:**\n"
         | 
|  | |
| 268 | 
             
                    "2. The app will predict the depth map, display it, and provide the focal length.\n"
         | 
| 269 | 
             
                    "3. Download the raw depth data as a CSV file.\n"
         | 
| 270 | 
             
                    "4. View the generated 3D model textured with the original image.\n"
         | 
| 271 | 
            +
                    "5. Adjust parameters and click 'Regenerate 3D Model' to update the model.\n"
         | 
| 272 | 
            +
                    "6. Download the 3D model as an OBJ file if desired.\n\n"
         | 
| 273 | 
             
                    f"Last updated: {last_updated}"
         | 
| 274 | 
            +
                )
         | 
| 275 | 
            +
                
         | 
| 276 | 
            +
                with gr.Row():
         | 
| 277 | 
            +
                    input_image = gr.Image(type="filepath", label="Input Image")
         | 
| 278 | 
            +
                    depth_map = gr.Image(type="filepath", label="Depth Map")
         | 
| 279 | 
            +
                
         | 
| 280 | 
            +
                focal_length = gr.Textbox(label="Focal Length")
         | 
| 281 | 
            +
                raw_depth_csv = gr.File(label="Download Raw Depth Map (CSV)")
         | 
| 282 | 
            +
                
         | 
| 283 | 
            +
                with gr.Row():
         | 
| 284 | 
            +
                    view_3d_model = gr.Model3D(label="View 3D Model")
         | 
| 285 | 
            +
                    download_3d_model = gr.File(label="Download 3D Model (OBJ)")
         | 
| 286 | 
            +
                
         | 
| 287 | 
            +
                with gr.Row():
         | 
| 288 | 
            +
                    simplification_factor = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Simplification Factor")
         | 
| 289 | 
            +
                    smoothing_iterations = gr.Slider(minimum=0, maximum=5, value=1, step=1, label="Smoothing Iterations")
         | 
| 290 | 
            +
                    thin_threshold = gr.Slider(minimum=0.001, maximum=0.1, value=0.01, step=0.001, label="Thin Feature Threshold")
         | 
| 291 | 
            +
                
         | 
| 292 | 
            +
                regenerate_button = gr.Button("Regenerate 3D Model")
         | 
| 293 | 
            +
                
         | 
| 294 | 
            +
                # Hidden components to store intermediate results
         | 
| 295 | 
            +
                hidden_depth_csv = gr.State()
         | 
| 296 | 
            +
                hidden_image_path = gr.State()
         | 
| 297 | 
            +
                hidden_focal_length = gr.State()
         | 
| 298 | 
            +
                
         | 
| 299 | 
            +
                input_image.change(
         | 
| 300 | 
            +
                    predict_depth,
         | 
| 301 | 
            +
                    inputs=[input_image],
         | 
| 302 | 
            +
                    outputs=[depth_map, focal_length, raw_depth_csv, view_3d_model, download_3d_model, hidden_image_path, hidden_focal_length]
         | 
| 303 | 
            +
                )
         | 
| 304 | 
            +
                
         | 
| 305 | 
            +
                regenerate_button.click(
         | 
| 306 | 
            +
                    regenerate_3d_model,
         | 
| 307 | 
            +
                    inputs=[raw_depth_csv, hidden_image_path, hidden_focal_length, simplification_factor, smoothing_iterations, thin_threshold],
         | 
| 308 | 
            +
                    outputs=[view_3d_model, download_3d_model]
         | 
| 309 | 
            +
                )
         | 
| 310 |  | 
| 311 | 
             
            # Launch the Gradio interface with sharing enabled
         | 
| 312 | 
            +
            iface.launch(share=True)
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -7,4 +7,5 @@ pillow_heif==0.8.0 | |
| 7 | 
             
            timm
         | 
| 8 | 
             
            trimesh==3.22.1
         | 
| 9 | 
             
            gradio
         | 
| 10 | 
            -
            opencv-python==4.5.5.64
         | 
|  | 
|  | |
| 7 | 
             
            timm
         | 
| 8 | 
             
            trimesh==3.22.1
         | 
| 9 | 
             
            gradio
         | 
| 10 | 
            +
            opencv-python==4.5.5.64
         | 
| 11 | 
            +
            open3d
         | 
